¿Qué sabemos sobre Fake News?: Un análisis bibliométrico/What do we know about Fake News?: A bibliometic analysis
DOI:
https://doi.org/10.15665/encuen.v20i02-Julio-dic..2756Palabras clave:
Noticias falsas, posverdad, bibliometría, redes socialesResumen
Las noticias falsas se difunden frecuentemente en medios sociales con implicaciones significativas en la opinión pública, fenómeno que incrementa el interés académico en estudiarlo. Esta investigación propone resumir el cuerpo de literatura desarrollada alrededor de noticias falsas mediante un análisis bibliométrico. Para ello, se analiza 1213 documentos del tema, extraídos de Scopus. Se construyen indicadores identificando la evolución de producción científica, revistas, autores y organizaciones más importantes, países de mayor producción, redes de acoplamiento bibliográfico y términos de mayor ocurrencia. Los resultados sugieren que los estudios sobre noticias falsas aumentaron desde el año 2016, coincidiendo con el brexit y las elecciones en EEUU, y la identificación de seis clúster que pueden guiar futuras investigaciones al reconocer las tendencias científicas.
Citas
Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 elections. Journal of Economic Perspectives, 31(2), 211-36.
Antonakaki, D., Fragopoulou, P. & Loannidis, S. (2020). A survey of Twitter research: Data model, graph structure, sentiment analysis and attacks. Expert systems with applications, 114006. DOI: 10.1016 / j.eswa.2020.114006
Baccarella, C. V., Wagner, T. F., Kietzmann, J. H., & McCarthy, I. P. (2018). Social media? It’s serious! Understanding the dark side of social media. European Management Journal, 36(4), 431–438. doi:10.1016/j.emj.2018.07.002.
Bakir, V., & McStay, A. (2017). Fake news and the economy of emotions. Digital Journalism, 6(2), 154–175. doi:10.1080/21670811.2017.1345645
Balmas, M. (2012). When fake news becomes real. Communication Research, 41(3), 430–454. doi:10.1177/0093650212453600.
Barišić, P. (2018). Truth and politics in the age of digital media. Synthesis Philosophica, 33 (2), 489–501. DOI: 10.21464 / sp33211
Bastos, M. T., & Mercea, D. (2017). The Brexit botnet and user-generated hyperpartisan news. Social Science Computer Review. 089443931773415. doi:10.1177/0894439317734157
Bates, N., & Sousa, S. C. (2020, July). Investigating Users’ Perceived Credibility of Real and Fake News Posts in Facebook’s News Feed: UK Case Study. In International Conference on Applied Human Factors and Ergonomics (pp. 174-180). Springer, Cham.
Bennett, W. L., & Livingston, S. (2018). The disinformation order: Disruptive communication and the decline of democratic institutions. European Journal of Communication, 33(2), 122–139. doi:10.1177/0267323118760317.
Berghel, H. (2017). Lies, damn lies and fake news. Computer, 50 (2), 80–85. DOI: 10.1109 / mc.2017.56
Blanco-Herrero, D. & Calderón, CA (2019). Dissemination and receipt of false news that promotes hate speech against migrants and refugees on social media. Proceedings of the Seventh International Conference on Ecosystem
Brashier, N. M., & Schacter, D. L. (2020). Aging in an Era of Fake News. Current Directions in Psychological Science, 096372142091587. doi:10.1177/0963721420915872
Brennen, J. S., Simon, F. M., & Nielsen, R. K. (2020). Beyond (Mis)Representation: Visuals in COVID-19 Misinformation. The International Journal of Press/Politics, 194016122096478. doi:10.1177/1940161220964780
Calvillo, DP, Ross, BJ, García, RJB, Smelter, TJ y Rutchick, AM (2020). Political ideology predicts perceptions of the COVID-19 threat (and susceptibility to fake news about it). Sciences of social psychology and personality, 194855062094053. doi: 10.1177 / 1948550620940539
Camps, D., Recuero, Y., Avila, R. E., & Samar, M. E. (2006). Bibliometric study of a volume of the journal Archives of Medicine. Archives of Medicine, 2(3).
Chen, Y., Conroy, N. J., & Rubin, V. L. (2015). Misleading Online Content. Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection - WMDD ’15. doi:10.1145/2823465.2823467.
Corneille, O., Mierop, A. y Unkelbach, C. (2020). Repetition increases both the perceived truthfulness and the falsity of the information: an ecological explanation. Cognition, 205, 104470. DOI: 10.1016 / j.cognition.2020.104470
De keersmaecker J, & Roets, A. (2017). “Fake news”: Incorrect, but hard to correct. The role of cognitive ability on the impact of false information on social impressions. Intelligence, 65, 107–110. doi:10.1016/j.intell.2017.10.005.
De Souza, JV, Gomes, J., Souza Filho, FM de, Oliveira Julio, AM de, & de Souza, JF (2020). A systematic mapping on the automatic classification of fake news on social networks. Social media analysis and mining, 10 (1). DOI: 10.1007 / s13278-020-00659-2
Dobreva, D., Grinnell, D. & Innes, M. (2019). Prophets and loss: how "soft facts" on social media influenced the Brexit campaign and social reactions to the murder of Jo Cox MP. Politics and Internet .doi: 10.1002 / poi3.203
Fishkin, J. (2018-07-12). Democracy When the People Are Thinking: Revitalizing Our Politics Through Public Deliberation. : Oxford University Press. Retrieved 27 Oct. 2020.
García-Marín, D. (2020). Global infodemic: information disruptions, false narratives and fact-checking during the covid-19 crisis. Information Professional, 29 (4).
Gorbea Portal, Salvador. (2016). Una nueva perspectiva teórica de la bibliometría basada en su dimensión histórica y sus referentes temporales. Investigación bibliotecológica, 30(70), 11-16. https://doi.org/10.1016/j.ibbai.2016.10.001
Granik, M., & Mesyura, V. (2017). Fake news detection using naive Bayes classifier. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). doi:10.1109/ukrcon.2017.8100379.
Hartley, K. y Vu, MK (2020). Fighting Fake News in the Age of COVID-19: Policy Insights from a Balance Model. Political science, 53 (4), 735-758.
Harsin, J. (2015). Post-truth, post-politics and attention regimes of economics. Communication, Culture And Criticism. 8 (2), 327–333. DOI: 10.1111 / cccr.12097
Himma-Kadakas, M. (2017). Alternative facts and fake news that enter the journalistic content production cycle. Cosmopolitan Civil Societies: An Interdisciplinary Journal, 9 (2), 25.
Jang, S. M., & Kim, J. K. (2018). Third person effects of fake news: Fake news regulation and media literacy interventions. Computers in Human Behavior, 80, 295–302. doi:10.1016/j.chb.2017.11.034.
Jankowski, NW (2018). Fake news investigation: A selective examination of empirical studies. Javnost - The Public, 25 (1-2), 248-255. DOI: 10.1080 / 13183222.2018.1418964
Khaldarova, I., & Pantti, M. (2016). Fake News. Journalism Practice, 10(7), 891–901. doi:10.1080/17512786.2016.1163237.
Koohikamali, M., & Sidorova, A. (2017). Information Re-Sharing on Social Network Sites in the Age of Fake News. Informing Science, 20.
Kshetri, N. & Voas, J. (2017).The "fake news" economy". Profesional de TI, 19 (6), 8–12. DOI: 10.1109 / mitp.2017.4241459
Lewandowsky, S., Ecker, U. K. H., & Cook, J. (2017). Beyond Misinformation: Understanding and Coping with the “Post-Truth” Era. Journal of Applied Research in Memory and Cognition, 6(4), 353–369. doi:10.1016/j.jarmac.2017.07.008.
Lotero-Echeverri, G., Romero-Rodríguez, L. M., & Pérez-Rodríguez, M. A. (2018). Fact-checking vs. Fake news: Confirmation journalism as a component of media competition against disinformation
Marchi, R. (2012). With Facebook, Blogs, and Fake News, Teens Reject Journalistic “Objectivity.” Journal of Communication Inquiry, 36(3), 246–262. doi:10.1177/0196859912458700.
Martel, C., Pennycook, G. y Rand, DG (2020). Confidence in emotions promotes belief in fake news. Cognitive research: principles and implications, 5 (1). DOI: 10.1186 / s41235-020-00252-3
Mihailidis, P., & Viotty, S. (2017). Spreadable Spectacle in Digital Culture: Civic Expression, Fake News, and the Role of Media Literacies in “Post-Fact” Society. American Behavioral Scientist, 61(4), 441–454. doi:10.1177/0002764217701217.
Nelson, J. L., & Taneja, H. (2018). The small, disloyal fake news audience: The role of audience availability in fake news consumption. New Media & Society, 146144481875871. doi:10.1177/1461444818758715
Pennycook, G., & Rand, D. G. (2018). Lazy, not biased: Susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning. Cognition. doi:10.1016/j.cognition.2018.06.011
Pennycook, G., Cannon, T. D., & Rand, D. G. (2018). Prior exposure increases perceived accuracy of fake news. Journal of Experimental Psychology: General, 147(12), 1865–1880. https://doi.org/10.1037/xge0000465
Pennycook, G., & Rand, D. G. (2019). Fighting misinformation on social media using crowdsourced judgments of news source quality. Proceedings of the National Academy of Sciences, 116(7), 2521-2526.
Pritchard, Alan. (1969). Statistical bibliography or bibliometrics?. Journal of Documentation. 25. 348-349.
Quandt, T. (2018). Dark Participation. Media and Communication, 6(4), 36-48. DOI:http://dx.doi.org/10.17645/mac.v6i4.1519.
Rochlin, N. (2017). Fake news: belief in post-truth. Library Hi Tech, 35 (3), 386–392. DOI: 10.1108 / lht-03-2017-0062
Rodrigues, Usha M; Xu, Jian (2020). Regulación de la infodemia de noticias falsas COVID-19 en China e India. Media International Australia, (), 1329878X2094820–. doi: 10.1177 / 1329878X2094820
San Martín, J., Drubi, F., & Pérez, D. R. (2020). Uncritical polarized groups: The impact of spreading fake news as fact in social networks. Mathematics and Computers in Simulation, 178, 192-206.
Scheufele, D. A., & Krause, N. M. (2019). Science audiences, misinformation, and fake news. Proceedings of the National Academy of Sciences, 201805871. doi:10.1073/pnas.1805871115.
Shu, K., Mahudeswaran, D., Wang, S., Lee, D. y Liu, H. (2018). Fakenewsnet - A data repository with news content, social context, and dynamic information for studying fake news on social media. preimpresión de arXiv arXiv: 1809.01286 , 8
Spohr, D. (2017). Fake news and ideological polarization. Business Information Review, 34(3), 150–160. doi:10.1177/0266382117722446.
Talwar, S., Dhir, A., Singh, D., Virk, GS y Salo, J. (2020). Sharing fake news on social networks: application of the honeycomb framework and the hypothesis of the third person effect. Journal of Retailing and Consumer Services, 57, 102197. DOI: 10.1016 / j.jretconser.2020.102197
Tandoc, E. C., Lim, Z. W., & Ling, R. (2017). Defining “Fake News.” Digital Journalism, 6(2), 137–153. doi:10.1080/21670811.2017.1360143.
Thakur, A., Shinde, S., Patil, T., Gaud, B. & Babanne, V. (2020). MYTHYA: Fake news detector, extractor and real-time news sorter. IV International Congress of Trends in Electronics and Informatics 2020 (ICOEI) (48184). DOI: 10.1109 / icoei48184.2020.9142971
Tomás-Górriz, Vicente & Tomás-Casterá, Vicente. (2018). La Bibliometría en la evaluación de la actividad científica. Hospital a Domicilio. 2. 145. 10.22585/hospdomic.v2i4.51.
Tolosana, R., Vera-Rodríguez, R., Fierrez, J., Morales, A. y Ortega-García, J. (2020). DeepFakes and More: A Survey on Facial Tampering and Fake Detection. Information fusion. doi: 10.1016 / j.inffus.2020.06.014
Vargo, C. J., Guo, L., & Amazeen, M. A. (2017). The agenda-setting power of fake news: A big data analysis of the online media landscape from 2014 to 2016. New Media & Society, 20(5), 2028–2049.
Vos, Tim P.; Hanusch, Folker; Dimitrakopoulou, Dimitra; Geertsema-Sligh, Margaretha; Sehl, Annika (2019). The International Encyclopedia of Journalism Studies || Fake News. , 10.1002/9781118841570(), 1–6. doi:10.1002/9781118841570.iejs0128
Vosoughi, S., Mohsenvand, M. “Neo”, & Roy, D. (2017). Rumor Gauge. ACM Transactions on Knowledge Discovery from Data, 11(4), 1–36. doi:10.1145/3070644
Waisbord, S. (2018). Truth is What Happens to News. Journalism Studies, 1–13. doi:10.1080/1461670x.2018.1492881
Wang, Y., McKee, M., Torbica, A., & Stuckler, D. (2019). Systematic literature review on the spread of health-related misinformation on social media. Social Science & Medicine, 112552. doi:10.1016/j.socscimed.2019.112552.
Waszak, P. M., Kasprzycka-Waszak, W., & Kubanek, A. (2018). The spread of medical fake news in social media – The pilot quantitative study. Health Policy and Technology, 7(2), 115–118. doi:10.1016/j.hlpt.2018.03.002
Wu, L., & Liu, H. (2018). Tracing Fake-News Footprints. Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining - WSDM ’18. doi:10.1145/3159652.3159677
Xiao, Y., Liu, Y., & Li, T. (2020). Edge Computing and Blockchain for Quick Fake News Detection in IoV. Sensors, 20(16), 4360. doi:10.3390/s20164360
Yavary, A., Sajedi, H. y Saniee Abadeh, M. (2019). Verification of information in social networks based on comments from users and news agencies. Social media analysis and mining, 10 (1). DOI: 10.1007 / s13278-019-0616-4
Zhao, Z., Zhao, J., Sano, Y., Levy, O., Takayasu, H., Takayasu, M.,… Havlin, S. (2020). Fake news propagates differently from real news even at early stages of spreading. EPJ Data Science, 9 (1). DOI: 10.1140 / epjds / s13688-020-00224-z
Zhu, J., & Liu, W. (2020). A tale of two databases: the use of Web of Science and Scopus in academic papers. Scientometrics, 1-15. https://doi.org/10.1007/s11192-020-03387-8
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Carlors Fernando Osorio Andrade, Edwin Arango, Hector Augusto Rodriguez Orejuela
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Política propuesta para revistas de acceso abierto
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).