Primary school Teachers’ additive problem-posing of word-problem in Mexico
DOI:
https://doi.org/10.15665/encuen.v21i01-Enero-junio.2668Keywords:
Problem-posing, additive word problems, semantic structure, Primary school teachers.Abstract
In this article, the challenging additive word problems created by a group of Primary School teachers in Mexico were analyzed. Using a qualitative methodology, data were collected in a workshop where teachers created their problems and were examined through content analysis based on the classification of additive problems according to their semantic structure. The findings show that most teachers create problems with change structures in the unknown in the final quantity and combination problems with the unknown quantity in the whole. The teachers proposed a few comparison and matching problems that are the most challenging, but problems with compound semantic structures were evident. It is concluded that it is important to continue researching additive comparison and equalization problems or problems (one and several stages) that require the connection between different semantic structures for their resolution, in order to train mathematically competent students from an early age.
References
Aké, L., P. (2018). Conocimiento matemático de maestros en formación sobre la simbología algebraica. IE Revista de Investigación Educativa de la REDIECH, 10(19), 55-70.
Association of Mathematics Teacher Educators [AMTE]. (2017). Standards for Preparing Teachers of Mathematics. Available online at amte.net/standards.
Castro, A. (2013). Contribución al análisis de la estructura semántica de los problemas aritméticos elementales. (Tesis de maestría). Universitat Autònoma de Barcelona, Barcelona.
Castro, A., Gorgorió, N., & Prat, M. (2014a). Una secuencia de formación para maestros: reflexionado acerca de los PAEV aditivos de una etapa. En R. Flores (Ed.), Acta Latinoamericana de Matemática Educativa, Vol. 28. (pp. 1475-1482). Barranquilla: RELME.
Castro, A., Gorgorió, N., & Prat, M. (2014b). Indicios verbales en los PAEV aditivos planteados por estudiantes para maestro. En M. T. González, M. Codes, D. Arnau y T. Ortega (Eds.), Investigación en Educación Matemática XVIII (pp. 217-226). Salamanca: SEIEM.
Bermejo, V., & Rodríguez, P. (1987). Estructura semántica y estrategias infantiles en la solución de problemas verbales de adición. Infancia y Aprendizaje, 10(39-40), 71-81.
Blanco, L., Caballero, A. & Cárdenas, J. (2015). Los problemas aritméticos escolares. En L. J. Blanco, J. A. Cárdenas y A. Caballero (Eds.), La resolución de problemas de Matemáticas en la formación inicial de profesores de primaria (pp. 123-138). España: Universidad de Extremadura.
Blanco, L. J., & Cárdenas, J. (2018). La resolución de problemas en la formación de profesores de matemáticas. En A. Ávila. (Coord.), Rutas de la educación matemática (pp. 208-226). Ciudad de México: Sociedad Mexicana de Investigación y Divulgación de la Educación matemática, A. C.
Cai, J., & Hwang, S. (2002). Generalized and generative thinking in US and Chinese students’ mathematical problem solving and problem posing. The Journal of Mathematical Behavior, 21(4), 401–421.
Cai, J., Hwang, S., Jiang, C., & Silber, S. (2015). Problem posing research in mathematics: Some answered and unanswered questions. In F. M. Singer, N. Ellerton, & J. Cai (Eds.), Problem posing: From research to effective practice. New York: Springer.
Cañadas, M. C., & Castro, E. (2011). Aritmética de los números naturales. Estructura aditiva. En I. Segovia y L. Rico (Coord.). Matemáticas para maestros en Educación Primaria (pp. 75-98). Madrid: Pirámide.
Cañadas, M. C., Molina, M., & Del Rio, A. (2018). Meanings given to algebraic symbolism in problem-posing. Educational Studies in Mathematics, 98(1), 19-37.
Carpenter, T. P., Fennema, E., Peterson, P. L., & Carey, D. A. (1988). Teachers' pedagogical content knowledge of students' problem-solving in elementary arithmetic. Journal for research in mathematics education, 385-401.
Carpenter, T., Hiebert, J., & Moser, J. (1981). Problem structure and first-grade children’s initial solution processes for simple addition and subtraction problems. Journal for research in mathematics education, 2(1), 27-39.
Castro, E., Rico, L., & Castro, E. (1995). Estructuras aritméticas elementales y su modelización. Bogotá: Una Empresa Docente.
Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education. London and New York: Routledge.
Common Core State Standards Initiative. (2018). Common core state standards for mathematics. Washington, D.C: National Governors Association Center for Best Practices and the Council of Chief State School Officers.
Crespo, S. (2003). Learning to pose mathematical problems: Exploring changes in preservice teachers’ practices. Educational Studies in Mathematics, 52, 243–270.
Daroczy, G., Wolska, M., Meurers, W. D., & Nuerk, H. C. (2015). Word problems: a review of linguistic and numerical factors contributing to their difficulty. Frontiers in Psychology, 6(348).
Echenique, I. (2006). Matemáticas resolución de problemas. Navarra: Fondo de publica¬ciones del gobierno de Navarra.
English, L. D. (1998). Children's problem posing within formal and informal contexts. Journal for Research in Mathematics Education, 29(1) 83-106.
Frías, A., & Castro, E. (2007). Influencia del número de conexiones en la representación simbólica de problemas aritméticos de dos pasos. PNA, 2(1), 29-41.
García, S.R. (2011). Resolución de problemas matemáticos en la escuela primaria: Proceso representacional, didáctico y evaluativo. México, D.F.: Trillas.
Kar, T., & Isik, C. (2015). The investigation of middle school mathematics teachers' views on the difficulty levels of posed problems. Journal of Kirsehir Education Faculty, 16(2), 63-81.
Lee, Y., Capraro, R., & Capraro, M. (2018). Mathematics teachers’ subject matter knowledge and pedagogical content knowledge in problem posing. International Electronic Journal of Mathematics Education, 13(2), 75-90.
López-Noguero, F. (2002). El análisis de contenido como método de investigación. Revista de Educación, 4,167-179.
Malaspina, U., Mallart, A., & Font, V. (2015). Development of teachers’ mathematical and didactic competencies by means of problem posing. In CERME 9-Ninth Congress of the European Society for Research in Mathematics Education, (2861-2866). Praga: Charles University in Prague and ERME.
Ministry of National Education (MoNE) (2009). Primary school mathematics curriculum grades 1 to 5. Ankara, Turkey: Author.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
Nesher, P. (1999). El papel de los esquemas en la resolución de problemas de enunciado verbal. SUMA, 31, 19-26.
Nesher, P., Greeno, J. G., & Riley, M. S. (1982). The development of semantic categories for addition and subtraction. Educational Studies in Mathematics, 13(4), 373-394.
Orrantia, J., González, L. & Vicente, S. (2005). Un análisis de los problemas aritméticos en los libros de texto en educación primaria. Infancia y aprendizaje, 28(4), 429-451.
Orrantia, J., Tarín, J., & Vicente, S. (2011). El uso de la información situacional en la resolución de problemas aritméticos. Infancia y Aprendizaje, 34(1), 81-94.
Orrantia, J., San Romualdo, S., Sánchez, R., Matilla, L., Muñez, D., & Verschaffel, L. (2018). Procesamiento de magnitudes numéricas y ejecución matemática. Revista educación, (381), 133-154.
Polotskaia, E., Savard, A., & Freiman, V. (2016). Investigating a case of hidden misinterpretations of an additive word problem: structural substitution. European Journal of Psychology of Education, 31(2), 135-153.
Puig, L., & Cerdán, F. (1988). Problemas aritméticos escolares. Síntesis.
Riley, M., Greeno, J. & Heller, J. (1983). Development of children’s problem-solving ability in arithmetic. En H. Ginsburg (Ed.), The development of mathematical thinking (pp. 153-196). Nueva York: Academic Press.
Rodríguez-Nieto, C. (2018). Caracterización de problemas aditivos de enunciado verbal en libros de texto del segundo periodo de educación básica en México (Tesis de maestría). Universidad Autónoma de Guerrero, Chilpancingo, Gro.
Rodríguez-Nieto, C., Navarro, C., Castro, A. & García-González, M. (2019). Estructuras semánticas de problemas aditivos de enunciado verbal en libros de texto mexicanos. Revista Educación Matemática, 31(2), 75-104. Doi 10.24844/EM3102.04
Sánchez, R., & Vicente, S. (2015). Models and processes for solving arithmetic word problems proposed by Spanish mathematics textbooks. Cultura y Educación, 27(4), 695-725.
Secretaría de Educación Pública (2011). Programas de estudios 2011 Guía para el maestro. Educación Básica. México: SEP.
Silber, S., & Cai, J. (2016). Pre-service teachers' free and structured mathematical problem Posing. International Journal of Mathematical Education in Science and Technology, doi: 10.1080/0020739X.2016.1232843
Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19-28.
Sitrava, R. T., & Işık, A. (2018). Semi-structured problem posing abilities of prospective primary school teachers: a case of turkey. European Journal of Education Studies.
Stickles, P. (2011). An Analysis of Secondary and Middle School Teachers’ Mathematical Problem Posing. Investigations in Mathematics Learning, 3 (2), 1-34.
Stoyanova, E. (2003). Extending students’ understanding of mathematics via problem posing. Australian Mathematics Teacher, 59(2), 32-40.
Stoyanova, E., & Ellerton, N. F. (1996). A framework for research into students’ problem-posing in school mathematics technology in mathematics education (pp.518–525). Melbourne: Mathematics Education Research Group of Australasia.
Tertemiz, N. I., & Sulak, S. E. (2013). The examination of the fifth-grade students’ problem-posing abilities. Elementary Education Online, 12(3),713-729.
Tichá, M., & Hošpesová, A. (2009). Problem posing and development of pedagogical content knowledge in prospective teacher training. In meeting of CERME (Vol. 6, pp. 1941-1950).
Van Harpen, X. Y., & Sriraman, B. (2012). Creativity and mathematical problem posing: An analysis of high school students’ mathematical problem posing in China and the USA. Educational Studies in Mathematics, 82(2), 201-221. Doi: 10.1007/s10649-012-9419-5.
Vergnaud, G. (1991). El niño, las Matemáticas y la realidad. México: Trillas.
Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Lisse, The Netherlands: Swets & Zeitlinger Publishers.
Verschafel, L., Schukajlow, S., Star, J., & Van Dooren, W. (2020). Word problems in mathematics education: a survey. ZDM. 1-16.
Vicente, S., & Orrantia, J. (2007). Resolución de problemas y comprensión situacional. Cultura y Educación, 19(1), 61-85.
Vicente, S., Orrantia, J., & Verschaffel, L. (2008). Influencia del conocimiento matemático y situacional en la resolución de problemas aritméticos verbales: ayudas textuales y gráficas. Infancia y Aprendizaje, 31 (4), 463-483.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Camilo Andrés Rodríguez-Nieto, María S. García-González, Catalina Navarro-Sandoval, Angela Castro Inostroza
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Proposed Policy for Open Access Journals
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication, with the work registered under a Creative Commons Attribution License, which allows others to use the published work as long as the authorship and first publication in this journal are acknowledged.
- Authors can enter into additional contractual agreements for the non-exclusive distribution of the published version of the article (e.g., include it in an institutional repository or publish it in a book) as long as the first publication in this journal is acknowledged.
- Authors are allowed and encouraged to post their work online (e.g., on institutional or personal websites) before and during the submission process, as this can lead to productive exchanges and a greater and faster dissemination of the published work (see The Effect of Open Access).