Modelado de volúmenes de producción agrícola: datos de regiones rusas en 2017 y 2018

Autores/as

  • Iuliia Pinkovetskaia Ulyanovsk State University, Ulyanovsk, Russian Federation.

DOI:

https://doi.org/10.15665/dem.v20i1.2985

Palabras clave:

Production function, agriculture, investments in fixed assets, wages, regions of Russia

Resumen

El estudio se basó en el desarrollo de las funciones de producción que caracterizan las actividades de las empresas agrícolas en las regiones de Rusia. Se utilizó información estadística oficial de 65 regiones de Rusia para 2017 y 2018. La investigación realizada permitió identificar los factores (inversiones en activos fijos, salarios de los empleados y relación entre la producción de cultivos y la producción ganadera) que afectan el volumen de producción en el sector agrícola en las regiones de Rusia y sugieren utilizar la producción de tres factores. funciones de alta calidad para describir esta influencia. Está comprobado que la economía de las regiones del país no ha llegado a la saturación con productos agrícolas y existen importantes reservas para un mayor desarrollo de este sector. Las funciones de producción desarrolladas son herramientas de gestión efectivas que permiten evaluar el nivel de uso de los recursos financieros y laborales.

Citas

Ahmetov, K., Madiev, G., Bekbossynova, A. (2019). “A Systematic assessement of the resource potential of agriculture based on correlation-regression analysis and modeling of production functions”, Problems of AgriMarket, No. 3, pp. 58-67.

Bessonov, V.A., Tsukhlo, S.V. (2002), Problems of constructing production functions in the Russian transitional economy. Analysis of the dynamics of the Russian transitional economy, Institute of Economics Transition period, Moscow, pp. 5-89. (in Russian).

Binghun, W., Zhou, E. (2021). Research of Total Factor Productivity and Agricultural Management Based on Malmquist-DEA Modeling. Hindawi. Mathematical Problems in Engineering, Vol. 2021, Article ID 2828061.

Carpentier A., Gohin A., Sckokai P., Thomas A. (2015). Economic modelling of agricultural production: past advances and new challenges. Review of agricultural and environmental studies, 96(1), pp. 131-165 DOI: 10.4074/S1966960715001071.

Charoenrat, T., Harvie, C. (2013). “Technical Efficiency of Thai Manufacturing SMEs: A Stochastic Frontier Analysis”. Australasian Accounting. Business and Finance Journal. Vol. 7, No. 1. pp. 97-122.

Czyzewski, B., Majchrzak, A. (2017). Economic size of farms and adjustments of the total factor productivity to the business cycle in polish agriculture. Agricultural Economics (Zemědělská ekonomika). No. 63. pp. 93–102.

Federal State Statistics Service. (2021). https://rosstat.gov.ru/ (accessed: 15.10.2021). (in Russian).

Felipe, J., McCombie, J. (2012), Problems with Regional Production Functions and Estimates of Agglomeration Economies: A Caveat Emptor for Regional Scien¬tists, Levy Economics Institute of Bard College Working Paper № 725, May, available at: http://www.levyinstitute.org/pubs/wp_725.pdf (accessed: 10 October 2021).

Gavrilenkov, Е.Е. (2000), Economic growth and long-term development strategy of Russia. The Russian Economy: the experience of transformation of the 1990s and development prospects, Higher School of Economics, Moscow, pp. 55-78.

Germanova, О.Е., Rudaya, Y.N. (2017). Dynamics of parameters and type of technological progress in agriculture. Regional economy. South of Russia. Vol. 3, No. 17. pp. 158-172. (in Russian).

Ghoshal, P., Goswami, B. (2017). “Cobb-Douglas Production Function For Measuring Efficiency in Indian Agriculture: A Region-wise Analysis”. Economic Affairs, Vol. 62, No. 4, pp. 573-579.

Granberg, А.G. (1988). Modeling of the socialist economy. Ekonomika, Moscow. (in Russian).

International Labour Conference, 104th Session. (2015). Report IV Small and medium-sized enterprises and decent and productive employment creation. International Labour Office (ILO), Geneva.

Kea, S., Li, H., Pich, L. (2016). “Technical Efficiency and Its Determinants of Rice Production in Cambodia”. Economies. Vol. 4, No. 4. pp. 1-17.

Kutenkov, R.P. (2020). “Methodology and results of factor forecasting of the dynamics of gross output and labor productivity in agriculture of the regions of the Russian Federation using production functions”. Ostrovsky readings. No. 1, pp. 99-103. (in Russian).

Margono, H., Sharma, S.C. (2004). Technical Efficiency and Productivity Analysis in Indonesian Provincial Economies. Discussion Papers, Paper 26, Southern Illinois University. Carbondale USA.

Naumov, I.V. (2017). “Problems of forecasting gross output in the regional socio-economic system”. Journal of Economic Theory. No. 4, pp. 68-83. (in Russian).

Nowak, A., Kijek, T., Domaсska, K. (2015). “Technical efficiency and its determinants in the European Union”. Agricultural Economics. Vol. 61. pp. 275–283. doi: 10.17221/200/2014-AGRICECON.

Parlinska, M., Dareev, G. (2011). “The agricultural production in mathematical models”. Problems of World Agriculture (Problemy Rolnictwa Światowego), Warsaw University of Life Sciences. Vol. 11, No. 26, pp. 1-5.

Petrick, M., Kloss, M. (2018). Identifying factor productivity from micro-data: The case of EU agriculture, Discussion Paper, No. 171, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), Halle (Saale), http://nbn-resolving.de/urn:nbn:de:gbv:3:2-90157 (access date 10.10.2021).

Petrikov, А.V. (2020). “The necessity and main features of the new agrarian policy in Russia”. APC: Economics, management. No. 12, pp. 24-34. (in Russian).

Pindyck, R., Rubinfeld, D. (2013). Microeconomics. Pearson, New York.

Potapov, А.P. (2020). “Estimation of agricultural production volumes depending on the structure of resource costs”. Economic Sciences. Vol. 6, No. 187, pp. 74-79, doi: 10.14451/1.187.74

Prager, D.L., Foltz, J.D., Barham, B.L. (2015). “Making time for agricultural and life science research: technical change and productivity gains”. American Journal of Agricultural Economics. Vol. 97, No. 3, pp. 743-761. doi: http://dx.doi.org/10.1093/ajae/aau089

Rezitis, A.N., Kalantzi, M.A. (2016). “Investigating technical efficiency and its determinants by data envelopment analysis: an application in the greek food and beverages manufacturing industry”. Agribusiness. Vol. 32, No. 2, pp. 254–271.

Shestakov, R.B., Yakovlev, N.A. (2020). Analysis of production potential in agriculture based on production function modelling. Bulletin of Rural Development and Social Policy. Vol. 3, No. 27. pp. 9-12. (in Russian).

Tolmachev, М.N. (2011). Problems of building production functions in Russian agriculture. Accounting and statistics. Vol. 4, No. 24. pp. 88-94. (in Russian).

Zhang, D., Xie, J., Ermanno, A. (2017). An Efficiency and Productivity Analysis of the Agricultural Sector in Alabama. International Journal of Applied Economics, Vol. 14, No. 2, pp. 19-36.

Zhilyaskova, N.P. (2008). Production function in agriculture. Economic Bulletin of Rostov State University, Vol. 6, No. 4, pp. 63-67. (in Russian).

Zyukin, D.A., Zhilin, V.V. (2014). Cobb-Douglas function when assessing the development of agriculture of Kursk area. Current directions of scientific research of the XXI century: theory and practice. Vol. 4-2, No. 9-2, pp. 299-302. (in Russian).

Descargas

Publicado

2022-06-09

Cómo citar

Pinkovetskaia , I. . (2022). Modelado de volúmenes de producción agrícola: datos de regiones rusas en 2017 y 2018. Dimensión Empresarial, 20(1). https://doi.org/10.15665/dem.v20i1.2985

Número

Sección

ARTÍCULOS RESULTADOS DE INVESTIGACIÓN