LOG-NORMAL MODEL FOR PREDICTING THE PRICE OF SHARES OF THE BANKING SECTOR

Authors

  • Edder Parody Camargo
  • Arturo Charris Fontanilla
  • Rafael García Luna

DOI:

https://doi.org/10.15665/rde.v14i1.412

Keywords:

log-normal model, actions, volatility, Monte-Carlo simulation, the root mean square error

Abstract

The following article develops a prediction exercise of share’s prices in the banking sector that quoted in the general index of the Stock exchange of Colombia (IGBC) during the period from 17 to 24 July 2015, using a model Log-normal complemented with Monte-Carlo’s simulations, in order to determine goodness of fit test of the model, using the root-mean-square deviation (RMSD). The results indicate that the model is useful to make an approximation to the possible minimal and maximum values that shares can take. Nevertheless, it´s results lack the sufficient precision to induce the accurate purchase of this type of financial assets. Since the profitability of these shares is calculated using the last 100 information and the model contributes equal relevancy to data t-100 to t-1. Without mattering if in t-1 moment, the volatility is lower or higher than in the t-100 moment, reason by is recommended in following researches, the application of models with mobile averages of gentle exponential and models of the Arch and Garch family, with major capacity of prediction.

References

Aghababaeyan, R., Siddiqui, T., & Ahmadkhan, N. (2011). Forecasting the Tehran Stock Market by Artificial Neural Network . 13-17.

Akintola , K. G., Alese, B. K., & Thompson , A. F. (2011). Time Series Forecasting with Neural Network: A Case of Stock Prices od Intercontinental Bank of Nigeria. International Journal of Research and Reviews in Applied Sciences, 9(3).

Andersen, T., Chung, H.-J., & Sorensen, B. (1998). Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study. Journal Of Econometrics, pp. 61-87. Disponible en: http://www.uh.edu/~bsorense/Emmpublished.pdf.

Anderson, D., Sweeney, D., & Williams, T. (2008). Estadísticas para Administración y Economía. Decima Edición . México D.F: Cengage Learning.

Arrieta Bechara, J., Torres Cruz, J., & Velásquez Ceballos, H. (2009). Predicciones de Modelos Econométricos y Redes Neuronales: El Caso de la Acción de SURAMINV. Semestre Económico, volumen 12, No. 25, pp. 95-109 -ISSN 0120-6346- julio-diciembre. Disponible en: http://revistas.udem.edu.co/index.php/economico/article/view/277.

Bolsa de Valores de Colombia. (30 de julio de 2015). https://www.bvc.com.co. Recuperado el 30 de julio de 2015, de https://www.bvc.com.co: https://www.bvc.com.co/pps/tibco/portalbvc/Home/Mercados/enlinea/acciones?action=dummy

Butoi, A., & Nemes, M. (2013). Data Mining on Romanian Stock Market Using Neural Networks for Price. Informatica Economica, 17(3), 125-136.

Carmona, D., & Criollo, C. (2015). Determinantes de riesgo en la valoración de acciones en el mercado colombiano: modelo multifactorial comparativo. Cuadernos de Administración, Vol. 31 N° 53. pp. 68-84. Disponible en: http://cuadernosdeadministracion.univalle.edu.co/index.php/cuadernosadmin/article/view/2879.

Cortés López, J. C., Debón Aucejo, A. M., & Moreno Navarro, C. (2007). Aplicación del Modelo Log-normal para la Predicción de activos del Banco de Sabadell. XVI Jornadas ASEPUMA. IV Encuentro Internacional (pág. 11). Valencia: Universidad Politécnica de Valencia. Disponible en: http://metodos.upct.es/asepuma/comunicaciones/completas/203.pdf

Cruz, E., Medina , P., & Zapata, C. (2010). Comportamiento del Precio de las Acciones un Enfoque de la Caminata Aleatoria. Scientia et Technica, Año XVI, No 44, pp. 84-89. Disponible en: http://www.redalyc.org/articulo.oa?id=84917316015.

De Arce, R. (2004). 20 años de modelos ARCH: una visión de conjunto de las distintas variantes de la familia. Estudios de economía aplicada, Vol. 22(Num. 1), ISSN 1697-5731.

Delfiner, M. (01 de Mayo de 2002). Comportamiento de los Precios de las Acciones en el Mercado Bursatil Argetino (Un Estudio Comparativo). Recuperado el 15 de Agosto de 2015, de http://www.ucema.edu.ar/publicaciones/download/documentos/215.pdf.

Fería Domínguez, J. M. (2005). El Riesgo del Mercado su Medición y Control. Madrid España: Delta Publicaciones Universitarias; Disponible en: https://books.google.com.co/books?id=tTh7jxbSxVUC&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false.

Hanias , M., Curtis, P., & Thalassinos, E. (2012). Time Series Prediction with Neural Networks for the Athens Stock Exchange Indicator . 15(2), 23-32.

Hanke, J. (2006). Pronósticos en los Negocios. Octava Edición. México: Pearson Education. Disponible en: https://books.google.com.co/books?id=WaiOrL8oct4C&pg=PR2&lpg=PR2&dq=Pron%C3%B3sticos+en+los+negocios.+Mexico:+C%C3%A1mara+Nacional+de+la+Industria+Editorial+Mexicana&source=bl&ots=YdfAx9fgS0&sig=37K2S7mY_v41bhNZAR0-WsA6gZ.

Hernández, S. (2009). Pronóstico y volatilidad del IPC de la bolsa mexicana de valores. 25-36. https://core.ac.uk/download/files/153/6436970.pdf.

Juez Martel, P., & Diez Vegas, F. J. (1997). Probabilidad y Estadística en Medicina. Madrid. España: Díaz de Santos S.A. Disponible en: https://books.google.com.co/books?id=J12lRXENQ88C&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false.

Laboissiere, L. A., Fernandes, R. A., & Lage, G. G. (2015). Maximum and minimum stock price forecasting of Brazilian power distribution companies based on artificial neural networks. Applied Soft Computing, 35, 66-74.

Lahmiri , S. (2016). Intraday stock price forecasting based on variational mode decomposition. Journal of Computational Science, 12, 23-27.

Llinas Solano, H., & Rojas Alvarez, C. (2009). Estadística descriptiva y Distribuciones de Probabilidad. Barranquilla Colombia: Ediciones Universidad del Norte.

Llinas Solano, H., & Rojas Alvarez, C. (2009). Medidas de Dispersión o de Variabilidad. Barranquilla. Colombia: Ediciones Universidad del Norte.

Maciel , L. S., & Ballini , R. (2010). Neural Networks Applied to Stock Market Forecasting: An Empirical Analysis. Learning and Nonlinear Models , 8, 3-22.

Marín, J., & Rubio, G. (2011). Economia Financiera. Madrid, España: Antoni Bosh. Disponible en: https://books.google.com.co/books?id=tmZXGX40fZsC&printsec=frontcover&dq=economia+financiera&hl=es&sa=X&ved=0ahUKEwjM5aiDjJfMAhWGWx4KHRZDCI4Q6AEIIzAC#v=onepage&q&f=false.

Mirzaei Talarposhti, F., Javedani Sadaei, H., Enayatifar, R., Gadelha Guimaraes, F., Mahmud, M., & Eslami, T. (2015). Stock market forecasting by using a hybrid model of exponential fuzzy time series. International Journal of Approximate Reasoning, 70, 79-98.

Moreno, C. (2012). Composición de la Cartera de Réplica Para la Predicción del Índice Bursátil Español IBEX 35. Valencia. España: Facultad de Administración y Direccioón de Empresas de la Universidad Politécnica de Valencia.

Muñoz Santiago , A., Ditta Mercado , E., & Duarte Padilla, H. (2012). Medición de la volatilidad del IGBC y la TRM utilizando las metodologías log-normal y montecarlo. Clio América, 6(12), 150-184.

Murphy, J. (2007). Análisis Ténico de los Mercados Financieros. Barcelona. España: Gestión 2000.

Ortiz Arango, F., Cabrera Llanos, A., & López Herrera, F. (2013). Pronóstico de los índices accionarios DAX y S&P 500 con redes neuronales diferenciales. Contaduría y Administración , 58(3), 203-225.

Perez-Guevara, M., & Moreno , E. (2012). Propuesta de un modelo predictivo de la variación del precio de acciones basado en redes neuronales y análisis de estados financieros. Anales, Vol. 12, Nº 1, 2012: 103-123. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=3943813.

Richardson, G., & Spiegelhalter, D. (1996). Markov Chain Monte Carlo in Practice. Boca Ratón, Florida: Chapman & Hall.

Servín y Silva, F. (2011). Estimación de la volatilidad de los precios de las acciones de la BMV mediante el modelo CARR. Revista: Contaduría y Administración, núm. 234, mayo-agosto, 2011, pp. 173-196. Disponible en: http://www.redalyc.org/articulo.oa?id=39518484009> ISSN 0186-1042.

Singh Vaisla, K., & Kumar Bhatt, A. (2010). An Analysis of the Performance of Artificial Neural Network Technique for Stock Market Forecasting. International Journal on Computer Science and Engineering, 2(6), 2104-2109.

Topa & Asociados. (2009). Modelos de Calculo de Volatilidad. Bogotá. Colombia: T&A. Disponible en: http://www.tya.com.co//pdfs/GT12.pdf.

Villada, F., Muñoz, N., & García, E. (2012). Aplicación de las Redes Neuronales al Pronóstico de Precios del Mercado de Valores. Información Tecnológica, Vol. 23(4), 11-20. doi: 10.4067/S0718-07642012000400003. Disponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-07642012000400003.

Wei, L.-Y. (2016). A hybrid ANFIS model based on empirical mode decomposition for stock time series forecasting. Applied Soft Computing.

Downloads

Published

2015-01-30

How to Cite

Parody Camargo, E., Charris Fontanilla, A., & García Luna, R. (2015). LOG-NORMAL MODEL FOR PREDICTING THE PRICE OF SHARES OF THE BANKING SECTOR. Dimensión Empresarial, 14(1), 137-150. https://doi.org/10.15665/rde.v14i1.412

Issue

Section

RESEARCH RESULTS ARTICLES

Similar Articles

You may also start an advanced similarity search for this article.