Comparison by computational modeling of mechanical performance of aeronautical parts made of magnesium and aluminum/Comparación por modelamiento computacional del desempeño mecánico de piezas aeronáuticas fabricadas en aleaciones de magnesio y de aluminio

Autores/as

DOI:

https://doi.org/10.15665/rp.v15i2.1134

Palabras clave:

Aeronáutico, Magnesio, Modelamiento, Simulación, Rediseño.

Resumen

Este trabajo se enfocó en evaluar la potencial sustitución de piezas fabricadas en aleaciones de aluminio que son comúnmente usadas en la industria aeronáutica. Se trabajó específicamente una pieza de un helicóptero UH-60 denominada pie de apoyo, la cual se usa en operaciones de mantenimiento de la aeronave. Es una pieza fabricada originalmente en aluminio 2024-T3, y se ha considerado la aleación de magnesio AZ31 como posible material sustituto para su fabricación, buscando reducir su peso neto sin cambiar los requisitos estructurales. Se empleó un software de análisis de elementos finitos en el módulo de análisis estructural (ANSYS), teniendo como criterio de diseño principal el factor de seguridad respecto a las cargas criticas de operación. Se realizó el rediseño de la pieza analizada para dar cumplimiento al factor de seguridad mínimo requerido por la normativa aeronáutica, obteniendo significativas posibilidades de reducción de peso para la pieza analizada.

Biografía del autor/a

Emigdio José Mendoza Fandiño, Universidad Pontificia Bolivariana

Docente, facultad de ingenieria mecanica, Universidad Pontificia Bolivariana-Medellín

Gloria Patricia Fernández Morales, Universidad Pontificia Bolivariana

Docente Titular,  Facultad de Ingeniería Industrial, Coordinadora Línea Nuevos Metales del Grupo de Investigación sobre Nuevos Materiales, Universidad Pontificia Bolivariana

Santiago Bedoya Velásquez, Universidad Pontificia Bolivariana

Ingeniero Aeronáutico, Facultad de Ingeniería Aeronáutica, Grupo de Investigación en Nuevos Materiales (GINUMA), Universidad Pontificia Bolivariana, Medellín, Colombia

Andrés Santiago Restrepo Aguirre, Universidad Pontificia Bolivariana

Ingeniero Aeronáutico, Facultad de Ingeniería Aeronáutica, Grupo de Investigación en Nuevos Materiales (GINUMA), Universidad Pontificia Bolivariana, Medellín, Colombia

Citas

Igor I Sikorsky Historical Archives, «Sikorsky Product History,» Sikorsky Archives, 13 Abril 2013. [En línea]. Available: http://www.sikorskyarchives.com/S+56%20HR2S-1H-37.php. [Último acceso: 5 Agosto 2014].

Igor I Sikorsky Historical Archives, « Sikorsky Product History,» Sikorsky Archives, 10 Enero 2013. [En línea]. Available: http://www.sikorskyarchives.com/S-55.php. [Último acceso: 5 Agosto 2014].

H. Palaniswamy, G. Ngaile and T. Altan, "Finite element simulation of magnesium alloys sheet forming at elevated temperature," Jurnal of Materials Processing technology, no. 146, pp. 52-60, 2004.

P. Sridhar and B. Shahapur, "Design and Analysis of Aircraft Hub by Considering Matrix Alloys," Anveshana's international Journal of Reseach in Engineering and Applied Sciences, vol. 2, no. 1, pp. 19-29, 2017.

T. Budd and P. Suau-Sanchez, "Assessing the fuel burn and CO2 impacts of the introduction of next generation aircraft: A study of a major European low-cost carrier," Research in Transportation Business & Management, vol. 21, pp. 68-75, 2016.

R. González and E. B. Hosoda, "Environmental impact of aircraft emissions and aviation fuel tax in Japan," Journal of Air Transport Management,, vol. 57, pp. 234-240, 2016.

A. Brugnoli, K. Button, G. Martinic and D. Scottic, "Economic factors affecting the registration of lower CO2 emitting aircraft in Europe," Transportation Research Part D: Transport and Environment, vol. 38, pp. 117-124, 2015.

J. E. Panner, D. H. Lister, D. J. Griggs, D. J. Dokken and M. McFarland, "IPCC Special report aviation and the global atmosphere," Intergovernmental panel on climate change, Geneva, Switzerland, 1999.

Air Transport Action Group (ATAG), "The right flightpath to reduce aviation emissions," Noviembre 2010. [Online]. Available: http://www.atag.org/component/downloads/downloads/72.html. [Accessed 20 Octubre 2016].

I. Ostrovsky y Y. Henn, «Present state and future of magnesium application in aerospace industry,» New challenges in aeronautics, pp. 1-5, 2007.

H. Videira, V. Anes, M. Freitas and L. Reis, "Characterization and evaluation of the mechanical behaviour of the magnesium alloy AZ31B in multiaxial fatigue in the presence of a notch," Procedia Structural Integrity, vol. 1, pp. 197-204, 2016.

Federal Aviation Administration (USA), Metallic Materials Properties Development and Standardization (MMPDS), Washington, DC, USA: Battelle Memorial Institute , 2013.

K. U. Kainer, Magnesium Alloys and Technologies, Germany: Wiley, 2006.

D. Zander and C. Schnatterer, "The influence of manufacturing processes on the microstructure and corrosion of the AZ91D magnesium alloy evaluated using a computational image analysis," Corrosion Science, vol. 98, pp. 291-303, 2015.

C. Bettles y M. Barnett, Advances in Wrought Magnesium Alloys, USA: Woodhead Publishing, 2012.

S. S. Park, Y. S. Park and N. J. Kim, "Microstructure and properties of strip cast AZ91 Mg alloy," Metals and Materials International, vol. 8, no. 6, pp. 551-554, 2002.

H. Somekawa, Y. Osawa and A. Singh, "Rare-earth free wrought-processed magnesium alloy with dispersion of quasicrystal phase," Scripta Materialia, vol. 61, no. 7, pp. 705-708, 2009.

E. Abe, Y. Kawamura, K. Hayashi y A. Inoue, «Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM,» Acta Materialia, vol. 50, nº 15, pp. 3845-3857, 2002.

Office of Aviation Research, «Metallic materials properties development and standardization (MMPDS),» Federal Aviation Administration, Washington, D.C., 2003.

Federal Aviation Administration, Federal Aviation Regulation - Code of Federal Regulations, Oklahoma: Federal Aviation Administration, 2014.

A. Singh, K. Solanki, M. V. Manuel y N. R. Neelameggham, Magnesium Technology, Hoboken, New Jersey.: Wiley, 2016.

M. Kettner, U. Noster, H. Kilian, R. Gradinger, W. Kühlein, A. Drevenstedt, F. Stadler, E. Ladstaetter y A. Lutz, «The InnMag Project – Processing Mg for Civil Aircraft Application,» Advanced Engineering Materials, vol. 9, pp. 813-819, 2007.

C. B. a. M. Barnett, Advances in wrought magnesium alloys, fundamentals of processing, properties and applications, Philadelphia, US: Woodhead Publishing Limited, 2012, pp. 3-38, 186-219, 346-368, 393-421.

P. Minárik, R. Král, J. Pesicka y F. Chmelik, «Evolution of mechanical properties of LAE442 magnesium alloy processed by extrusion and ECAP,» jurnal of materials Research and Technology, vol. 4, nº 1, pp. 75-78, 2015.

Office of Aviation Research, «Metallic Materials Properties Development and Standardization,» Federal Aviation Administration, Washington, D.C., 2003.

F. Czerwinski, Magnesium Alloys - Design, Processing and Properties, InTech, 2011.

Descargas

Publicado

2017-07-26