Review - Characterization of rubber compounds with post-industrial leather waste // Revisión - Caracterización de compuestos de caucho con residuos de cuero posindustrial

Autores/as

DOI:

https://doi.org/10.15665/rp.v15i2.776

Palabras clave:

Caracterización, Residuos de cuero, Caucho natural, Caucho sintético, Materiales compuestos, Tratamientos químicos.

Resumen

 Comúnmente los residuos industriales son dispuestos en vertederos o destinados para incineración, perdiendo con esto su uso potencial como materias primas en la fabricación de nuevos materiales. Las industrias del caucho y del cuero son consideradas como algunas de las más contaminantes a nivel mundial, sin embargo la industria del caucho ha demostrado su interés en el desarrollo de compuestos que involucren el uso de materiales clasificados como de desecho. Esta revisión abarca de manera general algunas características de residuos de cuero posindustrial, producidos durante el proceso de curtido químico con sales de cromo y los procesos de desbaste, así como las características y conceptos básicos para el análisis de compuestos de caucho aditivados con residuos de cuero. El tamaño de las partículas de cuero y su característica acida juegan un papel importante en los procesos de vulcanización y en las propiedades fisicoquímicas de los compuestos de caucho mezclados con este residuo posindustrial. La adición de residuos de cuero posindustrial genera en el caucho un efecto reforzante que puede ser aprovechado para aplicaciones en productos de mayor dureza que los cauchos no reforzados, sin embargo estos residuos generan una disminución en la capacidad de elongación del material.

Biografía del autor/a

William Urrego Yepes, Instituto Tecnológico Metropolitano (ITM)

Departamento de Ingeniería de Producción, Docente investigador tiempo Completo

Natalia Cardona Vásquez, Servicio Nacional de Aprendizaje (SENA)

Investigadora del Centro de Diseño y Manufactura del Cuero

Sandra Milena Velásquez Restrepo, Servicio Nacional de Aprendizaje (SENA)

Líder de Innovación y Desarrollo Tecnológico – SENNOVA del Centro de Diseño y Manufactura del Cuero

Carolina Abril Carrascal, Servicio Nacional de Aprendizaje (SENA)

Investigadora del Centro de Diseño y Manufactura del Cuero

Citas

M. Sathish, B. Madhan, K. J. Sreeram, J. R. Rao, and B. U. Nair, “Alternative carrier medium for sustainable leather manufacturing–a review and perspective,” J. Clean. Prod., vol. 112, pp. 49–58, 2016.

M. J. Ferreira and M. F. Almeida, “RECYCLING OF LEATHER WASTE CONTAINING CHROMIUM – A REVIEW,” Mater. Sci. Res. J., vol. 5, no. 4, pp. 1–8, 2012.

H. Ozgunay, S. Colak, M. M. Mutlu, and F. Akyuz, “Characterization of Leather Industry Wastes,” vol. 16, no. 6, pp. 867–873, 2007.

M. Risse, P. S. Associate, and A. Engineering, “F Ood W Aste C Omposting :,” vol. 107, no. 4, pp. 1–8, 2012.

U. Norte, A. Carlos, J. Andrea, F. Emiro, C. A. Forero-núñez, J. A. Méndez-velásquez, and F. E. Sierra-vargas, “Energetic improvement of tanned leather solid wastes by thermal treatment Mejoramiento energético de residuos sólidos de cuero curtido mediante tratamiento térmico,” Ing. y Desarro., vol. 33, p. 18, 2015.

D. W. Nazer, R. M. Al-Sa’ed, and M. a. Siebel, “Reducing the environmental impact of the unhairing–liming process in the leather tanning industry,” J. Clean. Prod., vol. 14, no. 1, pp. 65–74, Jan. 2006.

F. L. SEYMOUR-JONES, “The Chemical Constituents of Skin,” J. Ind. Eng. Chem., vol. 14, no. 2, pp. 130–132, Feb. 1922.

L. Ludwick, “A comparative study on surface treatments in conservation of dry leather, with focus on silicone oil.,” 2013.

T. C. Anthony D. Covington, Tanning Chemistry: The Science of Leather. 2011.

NIIR Board of consultants & engineers, Leather processing and taining technology handbook. National Institute of industrial research, 2005.

A. Pati, R. Chaudhary, and S. Subramani, “A review on management of chrome-tanned leather shavings: a holistic paradigm to combat the environmental issues.,” Environ. Sci. Pollut. Res. Int., vol. 21, no. 19, pp. 11266–82, Oct. 2014.

“Proceso de curtido y acabado del cuero.” [Online]. Available: http://www.tecnologiaslimpias.org/html/central/323101/323101_ee.htm#ETAPAS Y EQUIPOS DEL PROCESO.

S. Famielec and K. Wieczorek-Ciurowa, “Waste from leather industry. Threats to the environment,” Tech. Trans., no. 8, 2011.

O. Yılmaz, I. Cem Kantarli, M. Yuksel, M. Saglam, and J. Yanik, “Conversion of leather wastes to useful products,” Resour. Conserv. Recycl., vol. 49, no. 4, pp. 436–448, Feb. 2007.

D. V. Ribeiro, S. Y. Yuan, and M. R. Morelli, “Effect of Chemically Treated Leather Shaving Addition on characteristics and microstructure of OPC mortars,” Mater. Res., vol. 15, no. 1, pp. 136–143, 2012.

A. Marcilla, “Study of the influence of NaOH treatment on the pyrolysis of different leather tanned using thermogravimetric analysis and Py / GC – MS system,” J. Anal. Appl. Pyrolysis, vol. 92, pp. 194–201, 2011.

S. Swarnalatha, T. Srinivasulu, M. Srimurali, and G. Sekaran, “Safe disposal of toxic chrome buffing dust generated from leather industries,” J. Hazard. Mater., vol. 150, pp. 290–299, 2008.

M. Erdem and A. Ozverdi, “Leaching behavior of chromium in chrome shaving generated in tanning process and its stabilization,” J. Hazard. Mater., vol. 156, pp. 51–55, 2008.

P. Banerjee, S. Madhu, N. K. C. Babu, and C. Shanthi, “Bio-mimetic mineralization potential of collagen hydrolysate obtained from chromium tanned leather waste,” Mater. Sci. Eng. C, vol. 49, pp. 338–347, 2015.

H. Lakrafli, S. Tahiri, a. Albizane, M. Bouhria, and M. E. El Otmani, “Experimental study of thermal conductivity of leather and carpentry wastes,” Constr. Build. Mater., vol. 48, pp. 566–574, Nov. 2013.

M. J. Ferreira, M. F. Almeida, and T.Pinto, “Influence of temperature and holding time on hexavalent chromium formation during leather combustion.pdf,” J. Soc. leather Technol. Chem., vol. 83, pp. 135–138, 1999.

L. Falcão and M. E. M. Araújo, “Vibrational Spectroscopy Application of ATR – FTIR spectroscopy to the analysis of tannins in historic leathers : The case study of the upholstery from the 19th century Portuguese Royal Train,” Vib. Spectrosc., vol. 74, pp. 98–103, 2014.

L. C. a. Oliveira, M. C. Guerreiro, M. Gonçalves, D. Q. L. Oliveira, and L. C. M. Costa, “Preparation of activated carbon from leather waste: A new material containing small particle of chromium oxide,” Mater. Lett., vol. 62, no. 21–22, pp. 3710–3712, Aug. 2008.

A. Tôrres, L. Celina, G. Caldeira, B. De Melo, and G. Eduardo, “Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process,” vol. 48, pp. 448–456, 2016.

F. G. E. Nogueira, I. a Castro, A. R. R. Bastos, G. a Souza, J. G. de Carvalho, and L. C. a Oliveira, “Recycling of solid waste rich in organic nitrogen from leather industry: mineral nutrition of rice plants.,” J. Hazard. Mater., vol. 186, no. 2–3, pp. 1064–9, Feb. 2011.

S. Tahiri and M. Bouhria, “Thermal behaviour of chrome shavings and of sludges recovered after digestion of tanned solid wastes with calcium hydroxide,” vol. 27, pp. 89–95, 2007.

B. Davies, “Natural rubber—Its engineering characteristics,” Mater. Des., vol. 7, no. 2, pp. 68–74, 1986.

C. M. Roland, “Naval applications of elastomers,” Rubber Chem. Technol., vol. 77, no. 3, pp. 542–551, 2004.

P. Nallasamy and S. Mohan, “Vibrational spectra of cis-1,4-Polyisoprene,” Arab. J. Sci. Eng., vol. 1A, pp. 17–26, 2004.

M. . Fernández, N. Gonzáles, A. Mugica, and C. Bernicot, “Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR,” Thermochem. acta, vol. 1, pp. 65–70, 2006.

B.I. Gengrinovich, “Calorific and thermal properties of natural rubber in the oriented and non-oriented states,” Rubber Chem. Technol., vol. 95, no. 3, pp. 571–574, 1954.

J. L. Leblanc, “Rubber-filler interactions and rheological properties in filled compounds,” Prog. Polym. Sci., vol. 27, pp. 627–687, 2002.

M. Akiba and A. S. Hashim, “Vulcanization and crosslinking in elastomers,” Prog. Polym. Sci., vol. 22, no. 3, pp. 475–521, 1997.

A. Y. Coran, “Vulcanization (7),” Sci. End Technol. Rubber, vol. 17, p. 339, 1994.

B.Saville and A. . Watson, “Structural characterization of sulfur vulcanizates rubber networks,” Rubber Chem. Technol., vol. 36, p. 547, 1963.

A. J. Marzocca, C. A. Steren, R. B. Raimondo, and S. Cerveny, “Influence of the cure level on the monomeric friction coefficient of natural rubber vulcanizates,” Polym. Int., vol. 53, no. 6, pp. 646–655, 2004.

A. C. C. Peres, L. M. A. Lopes, L. L. Y. Visconte, and R. C. R. Nunes, “Uso de DSC na determinação de parâmetros de vulcanização de látex de borracha natural,” Polimeros, vol. 16, no. 1, pp. 61–65, 2006.

ASTM D2084: 2012, “Standard Test Method for Rubber Property — Vulcanization Using Oscillating Disk Cure Meter.”

A. J. Marzocca, S. Goyanes, and A. L. R. Garraza, “Influencia de la estructura de reticulación en el coeficiente de interaccion de flory en el sistema polibutadieno/tolueno,” Rev. Latinoam. Metal. y Mater., vol. 30, no. 1, pp. 67–72, 2010.

P. J. Flory and J. Rehner, “Statistical Mechanics of Cross-Linked Polymer Networks I. Rubberlike Elasticity,” J. Chem. Phys., vol. 11, no. 11, p. 512, 1943.

P. J. Flory and J. Rehner, “Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling,” J. Chem. Phys., vol. 11, no. 11, p. 521, 1943.

a N. Gent and J. D. Walter, “The Pneumatic Tire (Chapter 2),” Rubber World, no. February, p. 707, 2005.

R. J. Schaefer, “Mechanical Properties Of Rubber,” Harris’ Shock Vib. Handb., pp. 33.1–33.18, 2002.

W. U. Yepes, “Efecto del sistema de vulcanización en la cinética de reacción y en las propiedades físico-químicas de un caucho natural Colombiano,” repository.eafit.edu.co, p. 114, 2012.

ASTM D412: 2008, “Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers— Tension.”

ASTM D2240-05:2010, “Standard Test Method for Rubber Property — Durometer Hardness.”

ASTM D624-00:2012, “Standard Test Method for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomers.”

ASTM D395-14:2008, “Standard Test Methods for Rubber Property — Compression Set.”

ASTM D575-91:2007, “Standard Test Methods for Rubber Properties in Compression.”

D. O. Andrade, K. Krummenauer, and J. Jose, “Incorporation of chromium-tanned leather residue to asphalt micro-surface layer,” vol. 23, pp. 574–581, 2009.

M. A. Trezza and A. N. Scian, “Waste with chrome in the Portland cement clinker production,” vol. 147, pp. 188–196, 2007.

K. Ravichandran and N. Natchimuthu, “Natural Rubber - Leather Composites,” vol. 15, pp. 102–108, 2005.

K. Ravichandran and N. Natchimuthu, “Vulcanization characteristics and mechanical properties of natural rubber-scrap rubber compositions filled with leather particles,” Polym. Int., vol. 54, no. 3, pp. 553–559, Mar. 2005.

M. J. Ferreira, F. Freitas, and M. F. Almeida, “The Effect of Leather Fibers on the Properties of Rubber-Leather Composites,” J. Compos. Mater., vol. 44, no. 24, pp. 2801–2817, 2010.

R. J. Santos, D. L. S. Agostini, F. C. Cabrera, E. R. Budemberg, and A. E. Job, “Recycling Leather Waste: Preparing and Studying on the Microstructure, Mechanical, and Rheological Properties of Leather Waste/Rubber C,” Polym. Compos., pp. 1–7, 2014.

“ASTM D3182: 2013. Standard Practice for Rubber — Materials , Equipment , and Procedures for Mixing Standard Compounds and Preparing Standard Vulcanized.”

E. Sareena, C., Ramesan, M. T., & Purushothaman, “Utilization of coconut shell powder as a novel filler in natural rubber,” J. Reinf. Plast. Compos., vol. 31, no. 8, pp. 533–547, 2012.

“ABNT, N. (1987). 10005–Lixiviação de resíduos. Associação Brasileira de Normas Técnicas.”

M. R. Ruiz, E. R. Budemberg, G. P. Da Cunha, F. S. Bellucci, H. N. Da Cunha, and A. E. Job, “An innovative material based on natural rubber and leather tannery waste to be applied as antistatic flooring,” J. Appl. Polym. Sci., vol. 132, no. 3, pp. 1–11, 2015.

N. G. Garcia, E. A. P. dos Reis, E. R. Budemberg, D. L. da S. Agostini, L. O. Salmazo, F. C. Cabrera, and A. E. Job, “Natural rubber/leather waste composite foam: A new eco-friendly material and recycling approach,” J. Appl. Polym. Sci., vol. 132, no. 11, p. n/a–n/a, Nov. 2014.

M. J. Ferreira, M. F. Almeida, and F. Freitas, “Formulation and characterization of leather and rubber wastes composites,” Polym. Eng. Sci., vol. 51, no. 7, pp. 1418–1427, Jul. 2011.

J. Rajaram, B. Rajnikanth, and a. Gnanamani, “Preparation, characterization and application of leather particulate-polymer composites (LPPCs),” J. Polym. Environ., vol. 17, no. 3, pp. 181–186, 2009.

S. H. El-Sabbagh and O. a. Mohamed, “Recycling of chrome-tanned leather waste in acrylonitrile butadiene rubber,” J. Appl. Polym. Sci., vol. 121, no. 2, pp. 979–988, Jul. 2011.

A. Przepiórkowska, K. Chrońska, and M. Zaborski, “Chrome-tanned leather shavings as a filler of butadiene-acrylonitrile rubber,” J. Hazard. Mater., vol. 141, no. 1, pp. 252–257, 2007.

K. Chronska and A. Przepiorkowska, “Buffing dust as a filler of carboxylated butadiene-acrylonitrile rubber and butadiene-acrylonitrile rubber,” J. Hazard. Mater., vol. 151, no. 2–3, pp. 348–355, 2008.

C. Li, X. Feng, and E. Ding, “Preparation, Properties, and Characterization of Novel Fine Leather Fibers/Polyvinyl Alcohol Composites,” Polym. Compos., vol. 36, no. 7, pp. 1186–1194, 2014.

Descargas

Archivos adicionales

Publicado

2017-07-06