Design and construction of a reaction system for cyclohexane catalytic aerobic oxidation using cobalt in SBA-3 / Diseño y construcción de un sistema de reacción para la oxidación catalítica aeróbica de ciclohexano utilizando cobalto en SBA-3

Paolo Andrés Cuello Peñaloza
Leda del carmen Pernett Bolaño
Santander Bolivar Solano
Christian Rivera-Goyco



In this work, a reaction system was designed and built to carry out the aerobic oxidation reaction of cyclohexane to obtain cyclohexanol and cyclohexanone using cobalt incorporated in SBA-3 materials as catalysts, which were tested on this reaction using the system. The design comprehended the determination of the wall thickness of the reactor in order for it to perform at 140°C and 8 MPa. It also included the installation of an aeration system which also used to agitate the catalyst in the fluid bulk, the installation of temperature control and monitoring components, a scheme of delivery, measuring and manipulation of airflow, and a condensation of cyclohexane compound at the exit of the reactor. The reaction was carried out at the mentioned conditions during one hour, using two cobalt incorporated SBA-3 catalysts, synthetized previously by doping and incipient wetness impregnation respectively, in a theoretical molar Si/Co ratio of 25. The resulting conversions obtained with the materials were 0.81% and 0.20% for the doped and the impregnated material respectively.

Palabras clave

Cyclohexane aerobic oxidation, Lamé equations, PID control, heterogeneous catalysts, SBA-3 mesoporous materials.

Texto completo:



M.T. Musser, Cyclohexanol and Cyclohexanone in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA2000.

W. Zhan , G. Lu, Y. Guo, Y. Guo, Y. Wang, Y. Wang, X. Liu. “Synthesis of cerium-doped MCM-48 molecular sieves and its catalytic performance for selective oxidation of cyclohexane”. Journal of Rare Earths, 26, 4, 515-522, 2008.

S.S. Reddy., D.B. Raju, A.H. Padmasri, S.P.K. Prakash, & R.K.S. Rao, “Novel and efficient cobalt encapsulated SBA-15 catalysts for the selective oxidation of cyclohexane”. Catalysis Today, 141, 1-2, 61-65, 2009.

U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R.S. Da Cruz, M.C. Guerreiro, E.L. Pires. “Cyclohexane oxidation continues to be a challenge”. Applied Catalysis A: General, 211(1), 1-17, 2001

W.A. Carvalho, P.B. Varaldo, M. Wallau, U. Schuchardt, “Mesoporous redox molecular sieves analogous to MCM-41”, Zeolites, 18, 408-416, 1997.

A. Sakthivel, & P. Selvam. “Mesoporous (Cr)MCM-41: A Mild and Efficient Heterogeneous Catalyst for Selective Oxidation of Cyclohexane”. J. Catal., 211, 1, 134-143. 2002.

F. Adam, P. Retnam & A. Iqbal. “The complete conversion of cyclohexane into cyclohexanol and cyclohexanone by a simple silica-chromium heterogeneous catalyst”. Applied Catalysis A: General, 357, 1, 93-99. 2009

X. Liu, J. He, L. Yang, Y. Wang, S. Zhang, W. Wang & J. Wang. “Liquid-phase oxidation of cyclohexane to cyclohexanone over cobalt-doped SBA-3”. Catalysis Communications, 11, 8, 710-714. 2010.

B.P.C. Hereijgers, & B.M. Weckhuysen. “Aerobic oxidation of cyclohexane by gold-based catalysts: New mechanistic insight by thorough product analysis”. Journal of Catalysis, 270, 1, 16-25. 2010.

S.S. Reddy, D.B. Raju, A.H. Padmasri, S.P.K. Prakash, & R.K.S. Rao. Novel and efficient cobalt encapsulated SBA-15 catalysts for the selective oxidation of cyclohexane. Catalysis Today, 141, 1-2, 61-65. 2009.

Cyclohexane; MSDS, Fischer Scientific [Internet], Revised: 30-Oct-2014. (accessed 6/03/2016).

J. Fischer, T. Lange, R. Boehling, A. Rehfinger, & E. Klemm. Uncatalyzed selective oxidation of liquid cyclohexane with air in a microcapillary reactor. Chemical Engineering Science, 65(16), 4866–4872. 2010.

T. Kletz. What Went Wrong? Case Histories of Process Plant Disasters (4th edition). Houston, Texas: Gulf Professional Publishing, 1999, pp. 56-57. ISBN 0-88415-920-5.

H. Czichos, T. Saito, L. Smith. Springer Handbook of Metrology and Testing (2nd edition). Springer Science & Business Media, pp. 49, ISBN 978-3-642-16641-9.

P. Cuello & L. Pernett. “Materiales Mesoporosos SBA-3 con Co o Cr incorporados en su estructura” In: Optimización de Procesos y Recursos para un Desarrollo Sostenible – Parte 2. Asociación Colombiana de Ingeniería Química y Profesiones Afines, pp. 1059-1064. ISBN: 978-958-58438-0-6.

P. Cuello (2015), Síntesis de ciclohexanona a partir de ciclohexano utilizando catalizadores de cobalto o de cromo incorporados en SBA-3. Bachellor grade project, Universidad del Atlántico.

L. Pernett, P. Cuello, K. Barrios, G. Roncallo. Informe final convocatoria de COLCIENCIAS 617 de 2013. Universidad del Atlántico. Barranquilla, July 2015.

AK Steel Corporation. Product Data Sheet 304/304L Stainless Steel (2007). [Internet] (Accessed 7/31/2015).

D. Wright, J. Wolgamott, G.Zink. “PIPE THREADS - WHAT IS THE LIMIT?”. WJTA American Waterjet Conference. Houston, Texas. 2003.

M. Kashani, & R. Young. “Hoop stress approximation in offshore design codes”. Marine Structures, 21(2-3), 224-239. 2008.

G. Antaki. Piping and Pipeline Engineering – Design, Construction, Maintenance, Integrity and Repair. Nueva York: Marcel Dekker, Ch.4. 2003. ISBN: 0-8247-0964-0.

J. Regalbuto. Catalyst Preparation Science and Engineering. Boca Raton, Florida: CRC Press, pp. 47-48, 58, 165-169, 171, 174-181, 253-254. 2007. ISBN-10: 0-8493-7088-4.

M.L. Martínez, M.B. Gómez Costa, G.A. Monti, O.A. Anunziata, “Synthesis, characterization and catalytic activity of AlSBA-3 mesoporous catalyst having variable silicon-to-aluminum ratios”, Microporous and Mesoporous Materials, 144 (2011) 183-190.

Th. Makhlouf, M., M. Abu-Zied, B., & H. Mansoure, T. “Direct Fabrication of Cobalt Oxide Nano-particles Employing Glycine as a Combustion Fuel”. Physical Chemistry, 2, 6, 86-93. 2013.

B. Li, L. Li, L. Sun, F. Xia, S. Wang, J. Wang, “Liquid phase oxidation of 2-methyl pyridine to 2-pyridinecarboxylic acid over cobalt-doped SBA-3”, Catalysis Communications, 9 (2008) 2287-2290.

Ambili, V. K. Studies on Catalysis by Ordered Mesoporous SBA-15 Materials Modified with Transition Metals. PhD Thesis. Cochin University of Science and Technology, April 2011, 49.

M. Selvaraj, B.H. Kim & T.G. Lee. “FTIR Studies on Selected Mesoporous Metallosilicate Molecular Sieves”. Chemistry Letters, 34, 9, 1290-1291. 2005.

Enlaces refback

  • No hay ningún enlace refback.

Licencia Creative Commons
Este trabajo esta licenciado bajo una Licencia Internacional Creative Commons Atribución-NoComercial-SinDerivados 4.0.


ISSN : 1692-8261 Versión impresión
ISSN : 2216-1368 Versión Web

RedesRepositorio UACRedes Sociales

Licenciada bajo: