Las Ontologías para la detección automática de aspectos en el Análisis de Sentimientos / Ontologies for aspects automatic detection in sentiment analysis

Autores/as

  • Carlos Henriquez Miranda Universidad Autónoma del Caribe
  • Jaime Guzmán Luna Universidad Nacional de Colombia Sede Medellin

DOI:

https://doi.org/10.15665/rp.v14i2.750

Palabras clave:

Análisis de sentimientos, Minería de opiniones, Ontologías, PLN, Aspectos

Resumen

En este artículo se analiza el papel de las ontologías en  los sistemas  de  Análisis de Sentimientos a nivel de aspectos. El objetivo de la investigación  es indagar sobre las técnicas que se han aplicado en sistemas de análisis de sentimientos donde se hayan utilizado ontologías ya sea para  la extracción de los aspectos o determinación del sentimiento.  Para lograr lo planeado se seleccionaron los trabajos más representativos de la literatura a través de una revisión sistemática en donde se identificaron algunos criterios comunes que  permitieron un análisis comparativo de los trabajos versus los criterios. Los resultados obtenidos permiten dar las bases necesarias para el desarrollo de un modelo de análisis de sentimientos a  nivel de aspectos para el español basado en ontologías.

Citas

C. Henriquez y J. Guzmán, «Modelo de extracción de información desde recursos web,» Prospectiva, vol. 10, nº 2, pp. 74-80, 2012.

B. Liu, Sentiment Analysis and Opinion Mining, Synthesis Lectures on Human Language Technologies, 2012.

C. Henriquez, J. Guzman y D. Salcedo, «Minería de Opiniones basado en la adaptación al español de ANEW sobre opiniones acerca de hoteles.,» Procesamiento del Lenguaje Natural, vol. 56, pp. 25-32, 2016.

B. Pang y L. Lee, «Opinion Mining and Sentiment Analysis,» Vols. %1 de %22(1-2), nº 1-135, 2008.

R. Y. Lau, C. Li y S. S. Liao, «Social analytics: Learning fuzzy product ontologies for aspect-oriented sentiment analysis.,» Decision Support Systems, pp. 80-94, 2014.

H. Wang, Y. Lu y C. Zhai, «Latent aspect rating analysis on review text data: a rating regression approach,» de Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2010.

A. Bagheri, M. Saraee y F. d. Jong, «An Unsupervised Aspect Detection Model for Sentiment Analysis of Reviews,» de Language Processing and Information Systems, Springer Berlin Heidelberg, 2013, pp. 140-151.

L. Hurtado y F. Pla, «Análisis de Sentimientos, Detección de Tópicos y Análisis de Sentimientos de Aspectos en Twitter,» de TASS 2014, 2014.

W. Zhang, H. Xu y W. Wan., «Weakness Finder: Find product weakness from Chinese reviews by using aspects based sentiment analysis.,» Expert Systems with Applications, vol. 39, nº 11, pp. 10283-10291, 2012.

G. Qiu, B. Liu, J. Bu y C. Chen, «Opinion word expansion and target extraction through double propagation,» Computational Linguistics, vol. 37, nº 1, pp. 9 - 27, 2011.

A. G. Pablos, M. Cuadros, G. Rigau y S. Gaines, «Unsupervised acquisition of domain aspect terms for Aspect Based Opinion Mining,» Procesamiento del Lenguaje Natural, vol. 53, pp. 121-128, 2014.

J. Broß, Aspect-Oriented Sentiment Analysis of Customer Reviews Using Distant Supervision Techniques, Freie Universität Berlin, Germany., 2013.

D. Marcheggiani, O. Täckström, A. Esuli y F. Sebastiani, «Hierarchical multi-label conditional random fields for aspect-oriented opinion mining.,» de Advances in Information Retrieval, Springer International Publishing, 2014, pp. 273 - 285.

G. Somprasertsri y P. Lalitrojwong, «Automatic product feature extraction from online product reviews using maximum entropy with lexical and syntactic features,» de IEEE International Conference on, 2008.

J. Steinberger, T. Brychcın y M. Konkol, «Aspect-level sentiment analysis in czech,» ACL, p. 4, 2014.

K. Schouten y F. Frasincar, «Survey on Aspect-Level Sentiment Analysis,» IEEE Transactions on Knowledge and Data Engineering, vol. 28, nº 3, pp. 813-830, 2015.

E. Cambria, «An introduction to concept-level sentiment analysis.,» de Advances in Soft Computing and Its Applications, Springer Berlin Heidelberg, 2013, pp. 478 - 483.

E. Kontopoulos, C. Berberidis, T. Dergiades y &. Bassiliades, «Ontology-based sentiment analysis of twitter posts,» Expert systems with applications, pp. 4065-4074, 2013.

L. Freitas y R. Vieira, «Ontology based feature level opinion mining for portuguese reviews,» de Proceedings of the 22nd international conference on World Wide Web companion. International World Wide Web Conferences Steering Committee, 2013.

J. Ruiz-Martínez, R. Valencia-García y F. García-Sánchez, «Semantic-Based Sentiment analysis in financial news,» de Proceedings of the 1st International Workshop on Finance and Economics on the Semantic Web, 2012.

I. Peñalver-Martinez, F. Garcia-Sanchez, R. Valencia-Garcia, M. Á. Rodríguez-García, V. Moreno, A. Fragab y J. L. Sánchez-Cervantes, «Feature-based opinion mining through ontologies,» Expert Systems with Applications, vol. 41, nº 13, pp. 5995-6008, 2014.

I. Peñalver-Martínez, R. Valencia-García y F. García-Sánchez., «Ontology-guided approach to feature-based opinion mining.,» de Natural Language Processing and Information Systems. , Springer Berlin Heidelberg, 2011, pp. 193-200.

Studer y v. D. F. Rudi, «Knowledge engineering : principles and methods,» Data & Knowledge engineering, pp. 161-197, 1998.

N. F. Noy y D. L. McGuinness, «Ontology Development 101: A Guide to Creating Your First Ontology,» 2001.

B. Kitchenham., «Procedures for performing systematic reviews.,» Keele, UK, Keele University, vol. 33, pp. 1-26, 2014.

L. Zhou y P. Chaovalit, «Ontology-Supported Polarity Mining,» Journal of the American Society for Information Science and technology , pp. 98-110, 2008.

R. Y. Lau, C. C. Lai, J. Ma y Y. Li, «Automatic domain ontology extraction for context-sensitive opinion mining,» de ICIS 2009 Proceedings, 2009.

A. Cadilhac, F. Benamara y N. Aussenac-Gilles, «Ontolexical resources for feature based opinion mining: a case-study.,» de 23rd International conference on computational linguistics, 2010.

L. Liu, X. Nie y H. & Wang, «Toward a fuzzy domain sentiment ontology tree for sentiment analysis,» de Image and Signal Processing (CISP) 2012 5th International Congress on. IEEE,, 2012.

L. Qiu., «An Opinion Analysis Model for Implicit Aspect Expressions based on Semantic Ontology,» International Journal of Grid and Distributed Computing, pp. 165-172, 2015.

F. Bertola y V. Patti, «Ontology-based affective models to organize artworks in the social semantic web,» Information Processing & Management., pp. 139-162, 2016.

Descargas

Publicado

2016-06-16