Exploring Methods for MRI Artifact Correction
A Scoping Review
DOI:
https://doi.org/10.15665/rp.v24i1.3853Palabras clave:
Artefactos, Imágenes de resonancia magnética, Aprendizaje profundo de máquina, Corrección de imágenes, UNet, CNNResumen
La corrección de artefactos en imágenes por resonancia magnética (MRI) abarca desde estrategias de hardware y de adquisición/reconstrucción hasta enfoques de aprendizaje profundo (DL) en rápida evolución. Realizamos una revisión de alcance alineada con PRISMA-ScR para mapear qué se corrige, cómo se evalúa y dónde persisten las brechas de evidencia. Se buscaron estudios en PubMed y Scopus durante los últimos cinco años y se complementó con búsqueda manual. Para cada registro se extrajeron la familia de artefacto, la secuencia y el campo de MRI, la fuente de datos (reales vs. simulados), la clase de método, las métricas de evaluación y la disponibilidad de código/datos. La síntesis central comprende 16 estudios MRI: 11 investigaciones MRI+DL (dominadas por variantes de U-Net, con algunos modelos recurrentes o basados en transformadores) y 5 técnicas tradicionales o híbridas (p. ej., adquisiciones robustas al movimiento y reducción de artefactos por metal). Dos artículos adicionales de DL en modalidades afines se retuvieron solo como contexto para discutir transferibilidad y se excluyeron de conteos, tablas y métricas. Los métodos DL muestran ganancias sólidas en escenarios específicos, mientras que las técnicas tradicionales siguen siendo líneas base confiables. Sin embargo, la heterogeneidad de conjuntos de datos y protocolos, la escasa validación multicéntrica y la ausencia de benchmarks abiertos y estandarizados limitan la comparabilidad y la generalización clínica.
Citas
Gallo-Bernal, S.; Bedoya, M.A.; Gee, M.S.; Jaimes, C. Pediatric Magnetic Resonance Imaging: Faster Is Better. Pediatr Radiol 2023, 53, 1270–1284, doi:10.1007/s00247-022-05529-x.
Ferreira, P.F.; Gatehouse, P.D.; Mohiaddin, R.H.; Firmin, D.N. Cardiovascular Magnetic Resonance Artefacts. Journal of Cardiovascular Magnetic Resonance 2013, 15, 41, doi:10.1186/1532-429X-15-41.
Ensle, F.; Kaniewska, M.; Tiessen, A.; Lohezic, M.; Getzmann, J.M.; Guggenberger, R. Diagnostic Performance of Deep Learning-Based Reconstruction Algorithm in 3D MR Neurography. Skeletal Radiol 2023, 52, 2409–2418, doi:10.1007/s00256-023-04362-z.
Filli, L.; Jungmann, P.M.; Zingg, P.O.; Rüdiger, H.A.; Galley, J.; Sutter, R.; Pfirrmann, C.W.A. MRI with State-of-the-Art Metal Artifact Reduction after Total Hip Arthroplasty: Periprosthetic Findings in Asymptomatic and Symptomatic Patients. Eur Radiol 2020, 30, 2241–2252, doi:10.1007/s00330-019-06554-5.
Boutet, A.; Madhavan, R.; Elias, G.J.B.; Joel, S.E.; Gramer, R.; Ranjan, M.; Paramanandam, V.; Xu, D.; Germann, J.; Loh, A.; et al. Predicting Optimal Deep Brain Stimulation Parameters for Parkinson’s Disease Using Functional MRI and Machine Learning. Nat Commun 2021, 12, 3043, doi:10.1038/s41467-021-23311-9.
Ayde, R.; Senft, T.; Salameh, N.; Sarracanie, M. Deep Learning for Fast Low-Field MRI Acquisitions. Sci Rep 2022, 12, 11394, doi:10.1038/s41598-022-14039-7.
Captur, G.; Bhandari, A.; Brühl, R.; Ittermann, B.; Keenan, K.E.; Yang, Y.; Eames, R.J.; Benedetti, G.; Torlasco, C.; Ricketts, L.; et al. T1 Mapping Performance and Measurement Repeatability: Results from the Multi-National T1 Mapping Standardization Phantom Program (T1MES). J Cardiovasc Magn Reson 2020, 22, 31, doi:10.1186/s12968-020-00613-3.
Lyu, Q.; Shan, H.; Xie, Y.; Kwan, A.C.; Otaki, Y.; Kuronuma, K.; Li, D.; Wang, G. Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network. IEEE Transactions on Medical Imaging 2021, 40, 2170–2181, doi:10.1109/TMI.2021.3073381.
Tamada, D.; Kromrey, M.-L.; Ichikawa, S.; Onishi, H.; Motosugi, U. Motion Artifact Reduction Using a Convolutional Neural Network for Dynamic Contrast Enhanced MR Imaging of the Liver. Magn Reson Med Sci 2020, 19, 64–76, doi:10.2463/mrms.mp.2018-0156.
Zhao, B.; Liu, Z.; Ding, S.; Liu, G.; Cao, C.; Wu, H. Motion Artifact Correction for MR Images Based on Convolutional Neural Network. Optoelectron. Lett. 2022, 18, 54–58, doi:10.1007/s11801-022-1084-z.
Liu, J.; Kocak, M.; Supanich, M.; Deng, J. Motion Artifacts Reduction in Brain MRI by Means of a Deep Residual Network with Densely Connected Multi-Resolution Blocks (DRN-DCMB). Magnetic Resonance Imaging 2020, 71, 69–79, doi:10.1016/j.mri.2020.05.002.
Al-Haj Hemidi, Z.; Weihsbach, C.; Heinrich, M.P. IM-MoCo: Self-Supervised MRI Motion Correction Using Motion-Guided Implicit Neural Representations. In Proceedings of the Medical Image Computing and Computer Assisted Intervention – MICCAI 2024; Linguraru, M.G., Dou, Q., Feragen, A., Giannarou, S., Glocker, B., Lekadir, K., Schnabel, J.A., Eds.; Springer Nature Switzerland: Cham, 2024; pp. 382–392.
Pietsch, M.; Christiaens, D.; Hajnal, J.V.; Tournier, J.-D. dStripe: Slice Artefact Correction in Diffusion MRI via Constrained Neural Network. Med Image Anal 2021, 74, 102255, doi:10.1016/j.media.2021.102255.
Wei, Z.; Wu, X.; Tong, W.; Zhang, S.; Yang, X.; Tian, J.; Hui, H. Elimination of Stripe Artifacts in Light Sheet Fluorescence Microscopy Using an Attention-Based Residual Neural Network. Biomed Opt Express 2022, 13, 1292–1311, doi:10.1364/BOE.448838.
Saremi, F.; Grizzard, J.D.; Kim, R.J. Optimizing Cardiac MR Imaging: Practical Remedies for Artifacts. RadioGraphics 2008, 28, 1161–1187, doi:10.1148/rg.284065718.
Alfudhili, K.; Masci, P.G.; Delacoste, J.; Ledoux, J.-B.; Berchier, G.; Dunet, V.; Qanadli, S.D.; Schwitter, J.; Beigelman-Aubry, C. Current Artefacts in Cardiac and Chest Magnetic Resonance Imaging: Tips and Tricks. British Journal of Radiology 2016, 89, 20150987, doi:10.1259/bjr.20150987.
Stadler, A.; Schima, W.; Ba-Ssalamah, A.; Kettenbach, J.; Eisenhuber, E. Artifacts in Body MR Imaging: Their Appearance and How to Eliminate Them. Eur Radiol 2007, 17, 1242–1255, doi:10.1007/s00330-006-0470-4.
Noda, C.; Ambale Venkatesh, B.; Wagner, J.D.; Kato, Y.; Ortman, J.M.; Lima, J.A.C. Primer on Commonly Occurring MRI Artifacts and How to Overcome Them. RadioGraphics 2022, 42, E102–E103, doi:10.1148/rg.210021.
Rajiah, P.; Bolen, M.A. Cardiovascular MR Imaging at 3 T: Opportunities, Challenges, and Solutions. RadioGraphics 2014, 34, 1612–1635, doi:10.1148/rg.346140048.
Zimmerman, S.L. Aliasing Artifact in Phase-Contrast Cardiac MR. In Pearls and Pitfalls in Cardiovascular Imaging: Pseudolesions, Artifacts, and Other Difficult Diagnoses; Fishman, E.K., Zimmerman, S.L., Eds.; Cambridge University Press: Cambridge, 2015; pp. 159–161 ISBN 978-1-107-02372-7.
Kellman, P.; Arai, A.E. Cardiac Imaging Techniques for Physicians: Late Enhancement. J Magn Reson Imaging 2012, 36, 529–542, doi:10.1002/jmri.23605.
van Heeswijk, R.B.; Bonanno, G.; Coppo, S.; Coristine, A.; Kober, T.; Stuber, M. Motion Compensation Strategies in Magnetic Resonance Imaging. Crit Rev Biomed Eng 2012, 40, 99–119, doi:10.1615/critrevbiomedeng.v40.i2.20.
Lin, D.J.; Johnson, P.M.; Knoll, F.; Lui, Y.W. Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians. J Magn Reson Imaging 2021, 53, 1015–1028, doi:10.1002/jmri.27078.
Rafiee, M.J.; Eyre, K.; Leo, M.; Benovoy, M.; Friedrich, M.G.; Chetrit, M. Comprehensive Review of Artifacts in Cardiac MRI and Their Mitigation. Int J Cardiovasc Imaging 2024, 40, 2021–2039, doi:10.1007/s10554-024-03234-4.
Ahmadian, S.; Jabbari, I.; Bagherimofidi, S.M.; Saligheh Rad, H. Characterization of Hardware-Related Spatial Distortions for IR-PETRA Pulse Sequence Using a Brain Specific Phantom. Magn Reson Mater Phy 2021, 34, 213–228, doi:10.1007/s10334-020-00863-3.
Khodarahmi, I.; Kirsch, J.; Chang, G.; Fritz, J. Metal Artifacts of Hip Arthroplasty Implants at 1.5-T and 3.0-T: A Closer Look into the B1 Effects. Skeletal Radiol 2021, 50, 1007–1015, doi:10.1007/s00256-020-03597-4.
Kemenczky, P.; Vakli, P.; Somogyi, E.; Homolya, I.; Hermann, P.; Gál, V.; Vidnyánszky, Z. Effect of Head Motion-Induced Artefacts on the Reliability of Deep Learning-Based Whole-Brain Segmentation. Sci Rep 2022, 12, 1618, doi:10.1038/s41598-022-05583-3.
Ikeno, H.; Kobayashi, S.; Kozaka, K.; Ogi, T.; Inoue, D.; Yoneda, N.; Yoshida, K.; Ohno, N.; Gabata, T.; Kitao, A. Relationship between the Degree of Abdominal Wall Movement and the Image Quality of Contrast-Enhanced MRI: Semi-Quantitative Study Especially Focused on the Occurrence of Transient Severe Motion Artifact. Jpn J Radiol 2020, 38, 165–177, doi:10.1007/s11604-019-00896-2.
Zeilinger, M.G.; Kunze, K.-P.; Munoz, C.; Neji, R.; Schmidt, M.; Croisille, P.; Heiss, R.; Wuest, W.; Uder, M.; Botnar, R.M.; et al. Non-Rigid Motion-Corrected Free-Breathing 3D Myocardial Dixon LGE Imaging in a Clinical Setting. Eur Radiol 2022, 32, 4340–4351, doi:10.1007/s00330-022-08560-6.
Ghoul, A.; Pan, J.; Lingg, A.; Kübler, J.; Krumm, P.; Hammernik, K.; Rueckert, D.; Gatidis, S.; Küstner, T. Attention-Aware Non-Rigid Image Registration for Accelerated MR Imaging. IEEE Transactions on Medical Imaging 2024, 43, 3013–3026, doi:10.1109/TMI.2024.3385024.
Kim, S.; Park, H.; Park, S.-H. A Review of Deep Learning-Based Reconstruction Methods for Accelerated MRI Using Spatiotemporal and Multi-Contrast Redundancies. Biomed. Eng. Lett. 2024, 14, 1221–1242, doi:10.1007/s13534-024-00425-9.
Saotome, K.; Matsumoto, K.; Kato, Y.; Ozaki, Y.; Nagai, M.; Hasegawa, T.; Tsuchiya, H.; Yamao, T. Improving Image Quality Using the Pause Function Combination to PROPELLER Sequence in Brain MRI: A Phantom Study. Radiol Phys Technol 2024, 17, 518–526, doi:10.1007/s12194-024-00784-z.
Zhang, L.; Jiang, B.; Chen, Q.; Wang, L.; Zhao, K.; Zhang, Y.; Vliegenthart, R.; Xie, X. Motion Artifact Removal in Coronary CT Angiography Based on Generative Adversarial Networks. Eur Radiol 2023, 33, 43–53, doi:10.1007/s00330-022-08971-5.
Knoll, F.; Zbontar, J.; Sriram, A.; Muckley, M.J.; Bruno, M.; Defazio, A.; Parente, M.; Geras, K.J.; Katsnelson, J.; Chandarana, H.; et al. fastMRI: A Publicly Available Raw k-Space and DICOM Dataset of Knee Images for Accelerated MR Image Reconstruction Using Machine Learning. Radiology: Artificial Intelligence 2020, 2, e190007, doi:10.1148/ryai.2020190007.
Zhang, L.; Jiang, B.; Chen, Q.; Wang, L.; Zhao, K.; Zhang, Y.; Vliegenthart, R.; Xie, X. Motion Artifact Removal in Coronary CT Angiography Based on Generative Adversarial Networks. Eur Radiol 2023, 33, 43–53, doi:10.1007/s00330-022-08971-5.
Kofler, A.; Dewey, M.; Schaeffter, T.; Wald, C.; Kolbitsch, C. Spatio-Temporal Deep Learning-Based Undersampling Artefact Reduction for 2D Radial Cine MRI With Limited Training Data. IEEE Trans Med Imaging 2020, 39, 703–717, doi:10.1109/TMI.2019.2930318.
Oksuz, I.; Clough, J.R.; Ruijsink, B.; Anton, E.P.; Bustin, A.; Cruz, G.; Prieto, C.; King, A.P.; Schnabel, J.A. Deep Learning-Based Detection and Correction of Cardiac MR Motion Artefacts During Reconstruction for High-Quality Segmentation. IEEE Trans Med Imaging 2020, 39, 4001–4010, doi:10.1109/TMI.2020.3008930.
Petersen, S.E.; Matthews, P.M.; Francis, J.M.; Robson, M.D.; Zemrak, F.; Boubertakh, R.; Young, A.A.; Hudson, S.; Weale, P.; Garratt, S.; et al. UK Biobank’s Cardiovascular Magnetic Resonance Protocol. Journal of Cardiovascular Magnetic Resonance 2016, 18, 8, doi:10.1186/s12968-016-0227-4.
Bernard, O.; Lalande, A.; Zotti, C.; Cervenansky, F.; Yang, X.; Heng, P.-A.; Cetin, I.; Lekadir, K.; Camara, O.; Gonzalez Ballester, M.A.; et al. Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? IEEE Transactions on Medical Imaging 2018, 37, 2514–2525, doi:10.1109/TMI.2018.2837502.
Schär, M.; Kozerke, S.; Fischer, S.E.; Boesiger, P. Cardiac SSFP Imaging at 3 Tesla. Magn Reson Med 2004, 51, 799–806, doi:10.1002/mrm.20024.
Mueller, S.G.; Weiner, M.W.; Thal, L.J.; Petersen, R.C.; Jack, C.R.; Jagust, W.; Trojanowski, J.Q.; Toga, A.W.; Beckett, L. Ways toward an Early Diagnosis in Alzheimer’s Disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 2005, 1, 55–66, doi:10.1016/j.jalz.2005.06.003.
Liu, W.; Wei, D.; Chen, Q.; Yang, W.; Meng, J.; Wu, G.; Bi, T.; Zhang, Q.; Zuo, X.-N.; Qiu, J. Longitudinal Test-Retest Neuroimaging Data from Healthy Young Adults in Southwest China. Sci Data 2017, 4, 170017, doi:10.1038/sdata.2017.17.
LaMontagne, P.J.; Benzinger, T.L.; Morris, J.C.; Keefe, S.; Hornbeck, R.; Xiong, C.; Grant, E.; Hassenstab, J.; Moulder, K.; Vlassenko, A.G.; et al. OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease 2019, 2019.12.13.19014902.
Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med 2015, 12, e1001779, doi:10.1371/journal.pmed.1001779.
Lebel, R.M. Performance Characterization of a Novel Deep Learning-Based MR Image Reconstruction Pipeline 2020.
Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data (General Data Protection Regulation) 2016.
Health Insurance Portability and Accountability Act of 1996 (HIPAA) 1996.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2026 Jesus David Rios Perez

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as ceden los derechos de autor y dan a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).
Instrucciones para el llenado de la Certificación de Originalidad y la Cesión de Derechos de Autor.
- Haga click aquí y baje el formulario de Certificación de Originalidad y la Cesión de Derechos de Autor.
- En cada uno de los campos para rellenar haga click y complete lo correspondiente.
- Una vez llenos los campos, copie al final su firma escaneada o firma digital. Favor ajustar el tamaño de la firma en el formulario.
- Finalmente, lo puede guardar como pdf y enviarlo a través de la palataforma OJS, como archivo complementario.
Si tiene dudas contáctenos, por favor.
