Hardware Implementation of FPIC Controllers for Discrete-Time Chaotic Systems Using LabVIEW-FPGA

Autores/as

  • Heiner Castro Purdue University
  • Carlos Robles Universidad del Magdalena
  • John Taborda

DOI:

https://doi.org/10.15665/rp.v23i2.3767

Palabras clave:

sistemas caóticos, control FPIC, LabVIEW, FPGA, diagramas de bifurcación, mapas discretos no lineales

Resumen

Este artículo de investigación científica presenta la implementación en hardware de algoritmos de control basados en la técnica de Control por Inducción en Punto Fijo (FPIC) aplicada a sistemas caóticos. Se analizaron tres mapas caóticos en tiempo discreto—Logístico, Fold y Flip—tanto en configuraciones acopladas como no acopladas. Para cada sistema, se determinaron analíticamente los puntos de equilibrio. La estrategia de control fue implementada en tiempo real utilizando LabVIEW-FPGA, con el objetivo de generar y estabilizar comportamientos caóticos, y los resultados fueron validados mediante simulaciones en Matlab. Se obtuvieron diagramas de bifurcación para identificar las regiones de parámetros que conducen a comportamientos caóticos o estables. Todos los sistemas fueron implementados utilizando aritmética en punto fijo de 16 bits, demostrando la viabilidad de la implementación del control FPIC en FPGA. El entorno de prototipado propuesto constituye una herramienta valiosa para la evaluación rápida de estrategias de control basadas en el caos y sus posibles aplicaciones en comunicaciones seguras y sistemas no lineales.

Citas

L. Xiao, W. Jianzhen, and L. Hongqin, “Nonlinear System Identification based on Orthonormal Wavelet,” IJIREEICE, vol. 4, no. 10, pp. 82–85, Oct. 2016, doi: 10.17148/IJIREEICE.2016.41017.

F. Yang, X. An, and L. xiong, “A new discrete chaotic map application in image encryption algorithm,” Phys Scr, vol. 97, no. 3, p. 035202, Mar. 2022, doi: 10.1088/1402-4896/ac4fd0.

P. Fang, L. Dai, Y. Hou, M. Du, and W. Luyou, “The Study of Identification Method for Dynamic Behavior of High‐Dimensional Nonlinear System,” Shock and Vibration, vol. 2019, no. 1, Jan. 2019, doi: 10.1155/2019/3497410.

N. Nguyen, L. Pham-Nguyen, M. B. Nguyen, and G. Kaddoum, “A Low Power Circuit Design for Chaos-Key Based Data Encryption,” IEEE Access, vol. 8, pp. 104432–104444, 2020, doi: 10.1109/ACCESS.2020.2998395.

A. Iqbal, “Chaos control of brushless direct current motor using sliding mode control with a low cost hardware-in-loop validation,” Science Talks, vol. 14, p. 100453, Jun. 2025, doi: 10.1016/j.sctalk.2025.100453.

J. Chen et al., “Intelligent robust control for nonlinear complex hydro-turbine regulation system based on a novel state space equation and dynamic feedback linearization,” Energy, vol. 302, p. 131798, Sep. 2024, doi: 10.1016/j.energy.2024.131798.

D. Das, I. Taralova, and J. J. Loiseau, “Time-delay Feedback Control of Fractional Chaotic Rössler Oscillator,” IFAC-PapersOnLine, vol. 58, no. 5, pp. 90–95, 2024, doi: 10.1016/j.ifacol.2024.07.069.

Y. Zhang et al., “Chaotic band-gap modulation mechanism for nonlinear vibration isolation systems based on time-delay feedback control,” J Phys D Appl Phys, vol. 58, no. 1, p. 015311, Jan. 2025, doi: 10.1088/1361-6463/ad8008.

N. T. García, Y. A. G. Gomez, and V. H. Cespedes, “Robust control technique in power converter with linear induction motor,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 13, no. 1, p. 340, Mar. 2022, doi: 10.11591/ijpeds.v13.i1.pp340-347.

S. C. Trujillo, J. E. Candelo-Becerra, and F. E. Hoyos, “Analysis and Control of Chaos in the Boost Converter with ZAD, FPIC, and TDAS,” Sustainability, vol. 14, no. 20, p. 13170, Oct. 2022, doi: 10.3390/su142013170.

F. E. Hoyos, J. E. Candelo-Becerra, and C. I. Hoyos Velasco, “Application of Zero Average Dynamics and Fixed Point Induction Control Techniques to Control the Speed of a DC Motor with a Buck Converter,” Applied Sciences, vol. 10, no. 5, p. 1807, Mar. 2020, doi: 10.3390/app10051807.

F. E. Hoyos Velasco, J. E. Candelo-Becerra, and A. Rincón Santamaría, “Dynamic Analysis of a Permanent Magnet DC Motor Using a Buck Converter Controlled by ZAD-FPIC,” Energies (Basel), vol. 11, no. 12, p. 3388, Dec. 2018, doi: 10.3390/en11123388.

F. E. Hoyos, J. E. Candelo, and J. A. Taborda, “Selection and Validation of Mathematical Models of Power Converters using Rapid Modeling and Control Prototyping Methods,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 3, p. 1551, Jun. 2018, doi: 10.11591/ijece.v8i3.pp1551-1568.

F. E. Hoyos Velasco, J. E. Candelo, and J. I. Silva Ortega, “Performance evaluation of a DC-AC inverter controlled with ZAD-FPIC,” INGE CUC, vol. 14, no. 1, pp. 9–18, Jan. 2018, doi: 10.17981/ingecuc.14.1.2018.01.

C. Mohamed, K. Messaoudi, and L. Lamri, “Multi-level and real-time implementations using FPGA devices of PWM techniques used for the control of static converters,” J Supercomput, vol. 81, no. 4, p. 525, Feb. 2025, doi: 10.1007/s11227-024-06905-0.

A. Ravera, A. Oliveri, M. Lodi, and M. Storace, “FPGA Implementation of Nonlinear Model Predictive Control for a Boost Converter with a Partially Saturating Inductor,” Electronics (Basel), vol. 14, no. 5, p. 941, Feb. 2025, doi: 10.3390/electronics14050941.

Q. Wang et al., “Theoretical Design and FPGA-Based Implementation of Higher-Dimensional Digital Chaotic Systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 3, pp. 401–412, Mar. 2016, doi: 10.1109/TCSI.2016.2515398.

A. A. Nada and M. A. Bayoumi, “Development of embedded fuzzy control using reconfigurable FPGA technology,” Automatika, vol. 65, no. 2, pp. 609–626, Apr. 2024, doi: 10.1080/00051144.2024.2313904.

M. Y. Hamada, “Investigating the dynamics of generalized discrete logistic map,” Math Methods Appl Sci, vol. 48, no. 4, pp. 5325–5336, Mar. 2025, doi: 10.1002/mma.10606.

S. M. Mohamed, W. S. Sayed, L. A. Said, and A. G. Radwan, “Reconfigurable FPGA Realization of Fractional-Order Chaotic Systems,” IEEE Access, vol. 9, pp. 89376–89389, 2021, doi: 10.1109/ACCESS.2021.3090336.

S. Liu, Y. Wei, J. Liu, S. Chen, and G. Zhang, “Multi-Scroll Chaotic System Model and Its Cryptographic Application,” International Journal of Bifurcation and Chaos, vol. 30, no. 13, p. 2050186, Oct. 2020, doi: 10.1142/S0218127420501862.

O. Guillén-Fernández, A. Meléndez-Cano, E. Tlelo-Cuautle, J. C. Núñez-Pérez, and J. de J. Rangel-Magdaleno, “On the synchronization techniques of chaotic oscillators and their FPGA-based implementation for secure image transmission,” PLoS One, vol. 14, no. 2, p. e0209618, Feb. 2019, doi: 10.1371/journal.pone.0209618.

F. Capligins, A. Litvinenko, D. Kolosovs, M. Terauds, M. Zeltins, and D. Pikulins, “FPGA-Based Antipodal Chaotic Shift Keying Communication System,” Electronics (Basel), vol. 11, no. 12, p. 1870, Jun. 2022, doi: 10.3390/electronics11121870.

C. Mayo-Wilson, “Structural Chaos,” Philos Sci, vol. 82, no. 5, pp. 1236–1247, Dec. 2015, doi: 10.1086/684086.

H. Castro and J. A. Taborda, “Rapid prototyping of chaotic generators using LabView-FPGA,” in 2012 IEEE 4th Colombian Workshop on Circuits and Systems (CWCAS), IEEE, Nov. 2012, pp. 1–6. doi: 10.1109/CWCAS.2012.6404075.

Descargas

Publicado

2025-07-14