Composites of Polyvinyl Alcohol And Chitosan Reinforced With Zinc Oxide Nanoparticles for Regenerative Therapy

Autores/as

  • Carlos David Grande Tovar Universidad del Atlántico
  • Lemy Vanessa Barba
  • Carlos Humberto Valencia Llano

DOI:

https://doi.org/10.15665/rp.v23i1.3565

Palabras clave:

Chitosan composites; Polyvinyl alcohol; Tissue engineering; Zinc oxide nanoparticles.

Resumen

Recientemente, ha aumentado la demanda por terapias alternativas para la restauración de tejidos basadas en biomateriales que faciliten los procesos de restauración del tejido y eviten infecciones microbianas. En este trabajo, se sintetizaron cuatro formulaciones de composites basados en alcohol polivinílico (PVA), quitosano (CS) y nanopartículas de óxido de zinc (ZnO-NPs). Las principales bandas en el espectro infrarrojo del PVA y del CS fueron evidenciadas, así como la incorporación de las NPs-ZnO. El análisis termogravimétrico (TGA) y la calorimetría de barrido diferencial (DSC) demostraron que la interacción de las ZnO-NPs con el grupo carbonilo desestabiliza térmicamente a los composites. El estudio morfológico mediante microscopía electrónica de barrido (SEM) demostró que los composites incorporados con ZnO-NPs presentan una microestructura porosa irregular y rugosa, debido a la evaporación del solvente. El examen de los composites implantados mediante análisis histológico demostró su biocompatibilidad y biodegradabilidad 60 días después de la implantación. La degradación simultánea y la formación de fibras de colágeno de tipo I, con el aumento de los vasos sanguíneos y la inflamación, indican un material altamente biocompatible y reabsorbible, lo que podría potencialmente revolucionar la terapia regenerativa

Citas

Abdulghani S, Mitchell GR. Biomaterials for in situ tissue regeneration: A review. Biomolecules. 2019;9:750.

Krishani M, Shin WY, Suhaimi H, et al. Development of scaffolds from bio-based natural materials for tissue regeneration applications: A review. Gels. 2023;9:100.

Biswal T. Biopolymers for tissue engineering applications: A review. Mater Today Proc. 2021;41:397–402.

Feldman D. Poly (vinyl alcohol) recent contributions to engineering and medicine. Journal of composites science. 2020;4:175.

Rodríguez-Rodríguez R, Espinosa-Andrews H, Velasquillo-Martínez C, et al. Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: A review. International Journal of Polymeric Materials and Polymeric Biomaterials. 2020;69:1–20.

Kumar A, Han SS. PVA-based hydrogels for tissue engineering: A review. International journal of polymeric materials and polymeric biomaterials. 2017;66:159–182.

Teixeira MA, Amorim MTP, Felgueiras HP. Poly (vinyl alcohol)-based nanofibrous electrospun scaffolds for tissue engineering applications. Polymers (Basel). 2019;12:7.

Dattola E, Parrotta EI, Scalise S, et al. Development of 3D PVA scaffolds for cardiac tissue engineering and cell screening applications. RSC Adv. 2019;9:4246–4257.

Naghavi Alhosseini S, Moztarzadeh F, Kargozar S, et al. Development of polyvinyl alcohol fibrous biodegradable scaffolds for nerve tissue engineering applications: in vitro study. International Journal of Polymeric Materials and Polymeric Biomaterials. 2015;64:474–480.

Vunain E, Mishra AK, Mamba BB. Fundamentals of chitosan for biomedical applications. Chitosan Based Biomaterials Volume 1. Elsevier; 2017. p. 3–30.

Baharlouei P, Rahman A. Chitin and chitosan: prospective biomedical applications in drug delivery, cancer treatment, and wound healing. Mar Drugs. 2022;20:460.

Hossain MR, Mallik AK, Rahman MM. Fundamentals of chitosan for biomedical applications. Handbook of Chitin and Chitosan. Elsevier; 2020. p. 199–230.

Islam MM, Shahruzzaman M, Biswas S, et al. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact Mater. 2020;5:164–183.

Singh TA, Sharma A, Tejwan N, et al. A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv Colloid Interface Sci. 2021;295:102495.

Mandal AK, Katuwal S, Tettey F, et al. Current research on zinc oxide nanoparticles: Synthesis, characterization, and biomedical applications. Nanomaterials. 2022;12:3066.

Islam F, Shohag S, Uddin MJ, et al. Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials. 2022;15:2160.

Nathan KG, Genasan K, Kamarul T. Polyvinyl Alcohol-Chitosan Scaffold for Tissue Engineering and Regenerative Medicine Application: A Review. Mar Drugs. 2023.

Castro JI, Valencia-Llano CH, Zapata MEV, et al. Chitosan/polyvinyl alcohol/tea tree essential oil composite films for biomedical applications. Polymers (Basel). 2021;13.

Grande-Tovar CD, Castro JI, Tenorio DL, et al. Chitosan–Polyvinyl Alcohol Nanocomposites for Regenerative Therapy. Polymers (Basel) [Internet]. 2023 [cited 2024 May 21];15:4595. Available from: https://www.mdpi.com/2073-4360/15/23/4595/htm.

Rezaei A, Katoueizadeh E, Zebarjad SM. Investigating of the influence of zinc oxide nanoparticles morphology on the properties of electrospun polyvinyl alcohol/chitosan (PVA/CS) nanofibers. J Drug Deliv Sci Technol. 2023;86.

Coneo N, Ramos Y, De Ávila G, et al. Active chitosan- poly (vinyl alcohol) film reinforced with zinc oxide nanoparticles for food packaging applications. Polymers from Renewable Resources. 2023;14.

Rojas K, Canales D, Amigo N, et al. Effective antimicrobial materials based on low-density polyethylene (LDPE) with zinc oxide (ZnO) nanoparticles. Compos B Eng. 2019;172.

AEN/CTN. Evaluación biológica de los productos sanitarios Parte: Parte 6: Ensayos relativos a los efectos locales después de la implantación. 1995.

Du Sert NP, Hurst V, Ahluwalia A, et al. The arrive guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020;18:1–12.

Kariminejad M, Zibaei R, Kolahdouz-Nasiri A, et al. Chitosan/polyvinyl alcohol/SiO2 nanocomposite films: Physicochemical and structural characterization. Biointerface Res Appl Chem. 2022;12:3725–3734.

El-Hefian EA, Nasef MM, Yahaya AH. The preparation and characterization of Chitosan / Poly (Vinyl Alcohol) blended films. E-Journal of Chemistry. 2010;7.

Pandele AM, Ionita M, Crica L, et al. Synthesis, characterization, and in vitro studies of graphene oxide/chitosan-polyvinyl alcohol films. Carbohydr Polym. 2014;102:813–820.

Yusof YM, Illias HA, Kadir MFZ. Incorporation of NH4Br in PVA-chitosan blend-based polymer electrolyte and its effect on the conductivity and other electrical properties. Ionics (Kiel) [Internet]. 2014 [cited 2024 May 23];20:1235–1245. Available from: https://link-springer-com.ezproxy.uninorte.edu.co/article/10.1007/s11581-014-1096-1.

Gutha Y, Pathak JL, Zhang W, et al. Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int J Biol Macromol. 2017;103:234–241.

Mansur HS, Sadahira CM, Souza AN, et al. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering: C. 2008;28:539–548.

Haghighi H, Leugoue SK, Pfeifer F, et al. Development of antimicrobial films based on chitosan-polyvinyl alcohol blend enriched with ethyl lauroyl arginate (LAE) for food packaging applications. Food Hydrocoll. 2020;100:105419.

Tripathi S, Mehrotra GK, Dutta PK. Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. Int J Biol Macromol. 2009;45:372–376.

Elashmawi IS, Ismail AM, Abdelghany AM. The incorporation of polypyrrole (PPy) in CS/PVA composite films to enhance the structural, optical, and the electrical conductivity. Polymer Bulletin [Internet]. 2023 [cited 2024 May 26];80:11379–11399. Available from: https://link-springer-com.ezproxy.uninorte.edu.co/article/10.1007/s00289-022-04611-6.

Abdelfattah EM, Elzanaty H, Elsharkawy WB, et al. Enhancement of the Structure, Thermal, Linear/Nonlinear Optical Properties, and Antibacterial Activity of Poly (vinyl alcohol)/Chitosan/ZnO Nanocomposites for Eco-Friendly Applications. Polymers (Basel). 2023;15.

Jayakumar A, Radoor S, Shin GH, et al. Active and intelligent packaging films based on PVA/Chitosan/Zinc oxide nanoparticles/Sweet purple potato extract as pH sensing and antibacterial wraps. Food Biosci. 2023;56:103432.

Ahmed R, Tariq M, Ali I, et al. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol. 2018;120:385–393.

Saeed A, Guizani I, Hanash FE, et al. Enhancing optical, structural, thermal, electrical properties, and antibacterial activity in chitosan/polyvinyl alcohol blend with ZnO nanorods: polymer nanocomposites for optoelectronics and food/medical packaging applications. Polymer Bulletin 2024 [Internet]. 2024 [cited 2024 May 29];1–26. Available from: https://link-springer-com.ezproxy.uninorte.edu.co/article/10.1007/s00289-024-05270-5.

Kumar S, Krishnakumar B, Sobral AJFN, et al. Bio-based (chitosan/PVA/ZnO) nanocomposites film: Thermally stable and photoluminescence material for removal of organic dye. Carbohydr Polym. 2019;205:559–564.

Mao D, Li Q, Li D, et al. Fabrication of 3D porous poly (lactic acid)-based composite scaffolds with tunable biodegradation for bone tissue engineering. Mater Des. 2018;142:1–10.

Boccaccini AR, Chen Q, Lefebvre L. Sintering , Crystallisation and Biodegradation Behaviour of Bioglass-Derived Sintering , crystallisation and biodegradation behaviour of Bioglass s -derived glass – ceramics w. 2007;

Vicentini DS, Smania A, Laranjeira MCM. Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Materials Science and Engineering: C. 2010;30:503–508.

Jayakumar A, Radoor S, Shin GH, et al. Active and intelligent packaging films based on PVA/Chitosan/Zinc oxide nanoparticles/Sweet purple potato extract as pH sensing and antibacterial wraps. Food Biosci. 2023;56:103432.

El-Hefian EA, Nasef MM, Yahaya AH. Preparation and Characterization of Chitosan/Poly(Vinyl Alcohol) Blended Films: Mechanical, Thermal and Surface Investigations. J Chem [Internet]. 2011 [cited 2024 May 29];8:91–96. Available from: https://www.hindawi.com/journals/jchem/2011/969062/.

Antunes JC, Tavares TD, Teixeira MA, et al. Eugenol-containing essential oils loaded onto chitosan/polyvinyl alcohol blended films and their ability to eradicate staphylococcus aureus or pseudomonas aeruginosa from infected microenvironments. Pharmaceutics. 2021;13:1–22.

Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100.

Scarritt ME, Londono R, Badylak SF. Host response to implanted materials and devices: An overview. The Immune Response to Implanted Materials and Devices: The Impact of the Immune System on the Success of an Implant. 2016.

Bank RA, Zandstra J, Room H, et al. Biomaterial Encapsulation Is Enhanced in the Early Stages of the Foreign Body Reaction during Conditional Macrophage Depletion in Transgenic Macrophage Fas-Induced Apoptosis Mice. Tissue Eng Part A. 2017;23:1078–1087.

Balagangadharan K, Dhivya S, Selvamurugan N. Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol. 2017;104:1372–1382.

Laurenti M, Cauda V. ZnO nanostructures for tissue engineering applications. Nanomaterials. 2017;7:374.

Eslami-Kaliji F, Hedayat Nia N, Lakey JRT, et al. Mechanisms of Foreign Body Giant Cell Formation in Response to Implantable Biomaterials. Polymers (Basel). 2023;15.

Anderson J, Cramer S. Perspectives on the Inflammatory, Healing, and Foreign Body Responses to Biomaterials and Medical Devices. Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection. Elsevier Inc.; 2015.

Descargas

Publicado

2025-02-06

Número

Sección

Articles