Síntesis y Liofilización de Láminas de Óxido de Grafeno con Diferentes Grados de Oxidación

Autores/as

  • Gian Camilo Bastidas
  • Carlos David Grande Tovar Universidad del Atlántico
  • Manuel Noé Chaur

DOI:

https://doi.org/10.15665/rp.v23i1.3541

Resumen

Se sintetizó óxido de grafeno (OG) con diferentes grados de oxidación por medio del procedimiento de Hummers modificado. Además, con el fin de obtener láminas con menos impurezas, se llevó a cabo un procedimiento de secado por liofilización. El material obtenido presentó una banda ancha cercana a los 3250 cm-1 correspondiente al estiramiento O-H en su espectro FTIR, además de la presencia de bandas entre los 1000 – 2000 cm-1 correspondientes a enlaces C=O (1720 cm-1), O-C=O (1400 cm-1) y C-O (1030 cm-1) de grupos oxigenados. En el espectro Raman se observaron dos bandas entre los 1000–2000 cm-1 la banda D (1350 cm-1) y la banda G (1600 cm-1) y cuatro bandas anchas entre los 2500 – 3500 cm-1 correspondientes a las bandas G*, G´, 2D´ y D+G, generadas por la fluorescencia que emite el esqueleto grafítico del material. Ambos resultados permitieron confirmar la presencia de grupos oxigenados en la estructura de las muestras de OG. Las muestras liofilizadas presentaron bandas importantes como la tensión O-H (3250 cm-1), tensión C=O (1720 cm-1) y tensión C=C (1625 cm-1) del espectro FTIR y las bandas D (1350 cm-1) y G (1600 cm-1) en el espectro Raman, lo que permitió cuantificar el efecto de la oxidación y fragmentación del OG. Las micrografías obtenidas por las técnicas AFM y SEM permitieron confirmar que las láminas presentaron hasta 75 capas de óxido de grafeno. Para confirmar el grado de oxidación, se empleó espectroscopia XPS para la muestra OGm4, exhibiendo una oxidación del 44.25%. Los resultados obtenidos en esta investigación demuestran la posibilidad de preparar OG de manera rápida y sencilla con diferentes grados de oxidación y tamaño lateral de las láminas, lo cual es fundamental en las aplicaciones biológicas del material como inhibición bacteriana y capacidad anticancerígena.

Citas

Martinez, E., Cifuentes, Q., & Miguel, R. (2015). Grafeno un paso hacia el futuro. Mundo Nano. Revista Interdisciplinaria en Nanociencia y Nanotecnología. 2. 10.22201/ceiich.24485691e.2009.1.53571.

Jugade, R., Sharma, S., & Gokhale, S. (2014). CVD synthesis of graphene nanoplates on MgO support. https://doi.org/10.2478/s13536-013-0193-6. Materials Science-Poland, Volume 32(2), Pages 243-246.

Novoselov, K., Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I., & Firsov, A. (2004). Electric Field Effect in Atomically Thin Carbon Films. http://dx.doi.org/10.1126/science.1102896. Science, Volume 306, No. 5696, Pages 666-669.

Loh, K., Bao, Q., Ang, P., & Yang, J. (2010). The chemistry of graphene. https://doi.org/10.1039/B920539J J. Mater. Chem., Volume 20, Pages 2277–2289.

Urcuyo, R., González-Flores, D., & Cordero-Solano, K. (2021). Perspectivas y aplicaciones reales del grafeno después de 16 años de su descubrimiento. Revista Colombiana de Química, 50(1),51-85. [fecha de Consulta 20 de Marzo de 2024]. ISSN: 0120-2804. Recuperado de: https://www.redalyc.org/articulo.oa?id=309066297005.

Ajala, O., Tijani, J., Bankole, M., & Abdulkareem, A. (2022). A critical review on graphene oxide nanostructured material: properties, synthesis, characterization and application in water and wastewater treatment. https://doi.org/10.1016/j.enmm.2022.100673. Environmental Nanotechnology, Monitoring & Management, Volume 18, Pages 100673.

García, C. (2020). Aplicaciones biomédicas del óxido de grafeno. (Trabajo Fin de Grado Inédito). Universidad de Sevilla, Sevilla.

Liu, X., Cheng. S., Liu, H., Hu, S., Zhang, D., & Ning, H. (2012). A survey on gas sensing technology. https://doi.org/10.3390/s120709635. Sensors, Volume 12 Pages 9635-9665.

Julia, K., & Wolfgang, F. (2011). The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. https://doi.org/10.1016/j.ejpb.2011.03.010. European Journal of Pharmaceutics and Biopharmaceutics, Volume 78, Issue 2, Pages 248-263, ISSN 0939-6411.

Zhichong Q., Tingting D., Pengkun M., Fangfei L., & Wei, C. (2019). Transport of graphene oxide in saturated quartz sand containing iron oxides. https://doi.org/10.1016/j.scitotenv.2018.12.143. Science of The Total Environment, Volume 657, Pages 1450-1459, ISSN 0048-9697,

Karthikeyan, K., Murugan, V., Kyusik, Y., & S. K. (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. https://doi.org/10.1016/j.carbon.2012.10.013. Carbon, Volume 53, 2013, Pages 38-49, ISSN 0008-6223.

Jaejun, P., Wonki, L., Jungtae, N., Joong, T., Chel-Jong, C., Jun, Y. (2022) A study of the correlation between the oxidation degree and thickness of graphene oxides. https://doi.org/10.1016/j.carbon.2021.12.101. Carbon, Volume 189, 2022, Pages 579-585, ISSN 0008-6223.

Gawryla, M., Berg, O., Weder, C., & Schiraldi, D. (2009). Clay aerogel/cellulose whisker nanocomposites: a nanoscale wattle and daub. https://doi.org/10.1039/B823218K. J Mater Chem;19(15):2118–24.

Berg, O., Capadona, J., & Weder, C. (2007). Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. https://doi.org/10.1021/bm061104q. Biomacromolecules; 8(4):1353–7.

Perez, D. (2020). Evaluación de las propiedades físico químicas, mecánicas y adhesivas de un cemento de ionómero de vidrio modificado con nanopartículas de cobre como agente antibacterial. Centro de Investigacion Cientifica de Yucatan, Merida Yucatan, Mexico. [fecha de Consulta 20 de Marzo de 2024]. Recuperado de: http://hdl.handle.net/20.500.11799/137064.

Si, Y., & Samulski, E. (2008). Synthesis of water soluble graphene. doi:10.1021/nl080604h. Nano Letters, Volume 8(6), Pages 1679-1682.

Lopez, I., Hernandez R., Palacios B., Jimenez A., Yee I., & Aguilar, L. (2015), Síntesis y caracterización de grafeno, por del método de Hummers y posterior reducción térmica con ácido ascórbico. Benemérita Universidad Autónoma de Puebla. Tendencias en Docencia e Investigación en Química. [fecha de Consulta 20 de Marzo de 2024]. Recuperado de: http://hdl.handle.net/11191/9110.

Zhou, A., Bai, J., Hong, W., & Bai, H. (2022). Electrochemically reduced graphene oxide: preparation, composites, and applications. https://doi.org/10.1016/j.carbon.2022.01.056. Carbon, Volume 191, Pages 301-332.

Shao, G., Lu, Y., Wu, F. (2012). Graphene oxide: the mechanisms of oxidation and exfoliation. https://doi.org/10.1007/s10853-012-6294-5. J Mater Sci 47, 4400–4409.

Lunavictoria, B., & Miguel, A. (2020). Síntesis y caracterización de óxido de grafeno y óxido de grafeno reducido. Escuela Superior Politécnica de Chimborazo. Riobamba. [fecha de Consulta 20 de Marzo de 2024]. Recuperado de: http://dspace.espoch.edu.ec/handle/123456789/14311.

Guerrero, J., & Caballero, F. (2015). Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. https://doi.org/10.1016/j.matchemphys.2015.01.005. Materials Chemistry and Physics, Volume 153, Pages 209-220.

Zaaba, N., Foo, K., Hashim, U., Tan, S., & Liu, C. (2017), Voon, Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. DOI:10.1016/j.proeng.2017.04.118. Procedia Engineering, Volume 184, Pages 469-477, ISSN 1877-7058,.

Alam, S., Sharma, N., & Kumar, L. (2017) Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO)*. doi: 10.4236/graphene.2017.61001. Graphene, 6, 1-18.

Jiříčková, A., Jankovský, O., Sofer, Z., & Sedmidubský, D. (2022). Synthesis and Applications of Graphene Oxide. https://doi.org/10.3390/ma15030920. Materials, Volume 15(3), Pages 920.

Sergi, C., Aïda, V., David, M., Mercedes, V., & Albert, C. (2015). The importance of interbands on the interpretation of the Raman spectrum of graphene oxide. DOI: 10.1021/acs.jpcc.5b01590. The Journal of Physical Chemistry C 119 (18), 10123-10129

Qaiser, A., Ahmed, S., Tayyab, A., Yasir, F., Awan M., & Lakshmi, N. (2017). Characterization of reduced graphene oxide produced through a modified Hoffman method. DOI: 10.1080/23312009.2017.1298980. Cogent Chemistry, Volume 3, Pages 1 - 9,

Malard, L., Pimenta, M., Dresselhaus, G., & Dresselhaus, M. (2009). Raman spectroscopy in Graphene. https://doi.org/10.1016/j.physrep.2009.02.003. Physics Reports, Volume473(5–6), Pages 51-87.

Subrahmanyam, K., Vivekchand, S., Govindaraj, A., Rao, C., & Mater, J. (2008). Graphene: The New Two-Dimensional Nanomaterial. https://doi.org/10.1002/anie.200901678. Chem,Volume 18, Pages 1517.

Hontoria, C., López, A., López, J., Rojas, M., & Martín, R. (1995). Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. doi:10.1016/0008-6223(95)00120-3. Carbon, Volume 33(11), Pages 1585-1592.

Zhen, X., Bingna, Z., Jiewei, C., & Chao, G. (2014). Highly efficient synthesis of neat graphene nanoscrolls from graphene oxide by well-controlled lyophilization. DOI: 10.1021/cm503418h. Chemistry of Materials, 26 (23), 6811-6818.

Masoud, Y., & Gareth, W. (2022) A critical review of carbon nanomaterials applied in cementitious composites – A focus on mechanical properties and dispersion techniques. https://doi.org/10.1016/j.aej.2021.08.053. Alexandria Engineering Journal, Volume 61, Issue 5, Pages 3417-3433, ISSN 1110-0168.

Solís, P., Rozada, R., Paredes, J., Villar, S., Merino, M., Guardia, L., Martínez, A., &Tascón, J. (2012). Chemical and microscopic analysis of graphene prepared by different reduction degrees of graphene oxide. https://doi.org/10.1016/j.jallcom.2012.01.102. Journal of Alloys and Compounds, Volume 536, Supplement 1, 2012, Pages S532-S537, ISSN 0925-8388.

Luis, A., Noelia B., & Gabriela, I. (2019) Raman spectroscopy coupled with AFM scan head: A versatile combination for tailoring graphene oxide/reduced graphene oxide hybrid materials. https://doi.org/10.1016/j.apsusc.2019.143539. Applied Surface Science, Volume 495, 143539, ISSN 0169-4332.

Adetayo, A., & Runsewe, D. (2019). Synthesis and Fabrication of Graphene and Graphene Oxide: A Review. doi: 10.4236/ojcm.2019.92012. Open Journal of Composite Materials, 9, 207-229.

Dimiev, A., & Eigler, S. (2017). Graphene Oxide Fundamentals and Applications. DOI:10.1002/9781119069447. Kazan Federal University, Kazan, Russia.

Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., & Bieloshapka, I. (2014). Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. doi:10.1016/j.elspec.2014.07.003. Journal of Electron Spectroscopy and Related Phenomena, Volume 195, Pages 145–154.

Karthikeyan, K., Murugan, V., Kyusik, Y., & S.-J., K. (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. https://doi.org/10.1016/j.carbon.2012.10.013. Carbon, Volume 53, 2013, Pages 38-49, ISSN 0008-6223.

Dongxing, Y., Aruna, V., Gülay, B., Sungjin, P., Meryl, S., Richard, P., Sasha, S., Inhwa, J., Daniel, F., Carl, V., & Rodney, R. (2009). Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. https://doi.org/10.1016/j.carbon.2008.09.045. Carbon, Volume 47, Issue 1, Pages 145-152, ISSN 0008-6223.

Afanas’ev, V., Bocharov, G., Eletskii, A., Lobanova, L., Maslakov, K., & Savilov, S. (2023). Comparative Investigation of XPS Spectra of Oxidated Carbon Nanotubes and Graphene. https://doi.org/10.3390/biophysica3020020. Biophysica. 3(2):307-317.

Torrisi, L., Silipigni, L., Cutroneo, M., & Torrisi, A. (2020). Graphene oxide as a radiation sensitive material for XPS dosimetry. doi:10.1016/j.vacuum.2020.109175. Vacuum, Volume 173, Pages 109175.

Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S., & Atieh, M. (2019). XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. doi:10.1016/j.ceramint.2019.04.16. Ceramics International, Volume 45, Pages 14439- 14448.

Priante, F., Salim, M., Ottaviano, L., & Perrozzi, F. (2018). XPS study of graphene oxide reduction induced by (100) and (111)-oriented Si substrates. doi:10.1088/1361-6528/aaa320. Nanotechnology, Volume 29(7), Pages 075704.

Kwan, Y., Ng, G., & Huan, C. (2015). Identification of functional groups and determination of carboxyl formation temperature in graphene oxide using the XPS O 1s spectrum. doi:10.1016/j.tsf.2015.07.051. Thin Solid Films, Volume 590, Pages 40–48.

Descargas

Publicado

2025-02-06

Número

Sección

Articles