NANOMATERIALES EMPLEADOS EN TECNOLOGÍAS DE REMEDIACIÓN AMBIENTAL PARA LA ELIMINACIÓN DE IONES METÁLICOS EN MEDIOS ACUOSOS

Autores/as

  • Jhonatan Cepeda-Martinez Department of Mechanical Engineering, Universidad del Atlántico, Puerto Colombia, 081007, Colombia
  • MARIA CELY Universidad del Atlantico
  • Grey Castellar-Ortega Department of Basic Sciences, Universidad Autónoma de Caribe, Barranquilla, Colombia

DOI:

https://doi.org/10.15665/rp.v22i2.3489

Palabras clave:

bioremediación, nanometariales, ion metalico, remediación ambiental, medio acuoso

Resumen

Este estudio bibliométrico presenta un análisis de las investigaciones en el campo de los nanomateriales aplicados a procesos de remediación ambiental de iones metálicos en medios acuosos, para conocer su estado actual y desarrollo en los últimos años. Se ha utilizado una metodología correlacional-descriptiva, revisando publicaciones desde 1997 hasta 2022 en la base de datos Scopus. Las tendencias identificadas mostraron un crecimiento constante de la investigación y un aumento de las redes de colaboración entre instituciones e investigadores. En los últimos 10 años (2012 - 2022), la curva de crecimiento ha alcanzado una tasa de crecimiento del 24,75%. Países como China, India y Estados Unidos representan el 75% del total de publicaciones. Las palabras clave más representativas fueron biorremediación, metales pesados y remoción de metales con más de 600 conexiones.

Biografía del autor/a

MARIA CELY, Universidad del Atlantico

Department of Mechanical Engineering, Group CONFORMAT, Universidad del Atlántico, Puerto Colombia, 081007, Colombia, ORCID: 0000-0003-2980-8807

Grey Castellar-Ortega, Department of Basic Sciences, Universidad Autónoma de Caribe, Barranquilla, Colombia

3Department of Basic Sciences, Universidad Autónoma de Caribe, Barranquilla, 080002, Colombia, ORCID: 0000-0001-7711-5912

Citas

E. Dabirian et al., “Nanoparticles application on fuel production from biological resources: A review,” Fuel, vol. 331, Jan. 2023, doi: 10.1016/j.fuel.2022.125682.

J. Asitimbay and J. Loor, “‘Diseño de una planta de tratamiento de aguas residuales del centro de acopio de leche COPROCACB, parroquia Quimiag,’” Universidad Nacional de Chimnorazo, Riobamba, Ecuador, 2023.

S. F. Ahmed et al., “Nanomaterials as a sustainable choice for treating wastewater,” Environ Res, vol. 214, Nov. 2022, doi: 10.1016/j.envres.2022.113807.

N. A. Pedraza, “Valoración Económica Ambiental por el Mejoramiento de la Calidad del Agua de la Quebrada,” 2022.

Y. Lu and S. Ozcan, “Green nanomaterials: On track for a sustainable future,” Nano Today, vol. 10, no. 4, pp. 417–420, Aug. 2015, doi: 10.1016/j.nantod.2015.04.010.

T. M. Tiza, G. Kpur, E. Ogunleye, S. Sharma, S. K. Singh, and D. M. Likassa, “The potency of functionalized nanomaterials for industrial applications,” Mater Today Proc, 2023, doi: 10.1016/j.matpr.2023.03.212.

M. Cely-Bautista, G. Castellar-Ortega, J. Jaramillo-Colpas, and I. Romero, “Trends in the development of metallic and bimetallic nanoparticles: a patents landscape analysis.,” Ingeniería y Competitividad, vol. 25, no. 3, pp. 1–12, 2023.

A. D. Goswami, D. H. Trivedi, N. L. Jadhav, and D. V. Pinjari, “Sustainable and green synthesis of carbon nanomaterials: A review,” Journal of Environmental Chemical Engineering, vol. 9, no. 5. Elsevier Ltd, Oct. 01, 2021. doi: 10.1016/j.jece.2021.106118.

N. Chausali, J. Saxena, and R. Prasad, “Nanotechnology as a sustainable approach for combating the environmental effects of climate change,” vol. 12, no. February, 2023.

N. H. Ly, D. Barceló, Y. Vasseghian, J. Choo, and S.-W. Joo, “Sustainable bioremediation technologies for algal toxins and their ecological significance,” Environmental Pollution, vol. 341, p. 122878, 2024, doi: https://doi.org/10.1016/j.envpol.2023.122878.

S. H. Hussein, K. Qurbani, S. K. Ahmed, W. Tawfeeq, and M. Hassan, “Bioremediation of heavy metals in contaminated environments using Comamonas species: A narrative review,” Bioresour Technol Rep, vol. 25, p. 101711, 2024, doi: https://doi.org/10.1016/j.biteb.2023.101711.

G. Chellasamy, R. Mary, T. Maharajan, A. Radha, and K. Yun, “Remediation of microplastics using bionanomaterials : A review,” vol. 208, no. September 2021, 2022.

P. Lara, “‘Remediación ambiental en las políticas de reparación integral y los lineamientos del ministerio del ambiente en marco de los derechos de la naturaleza en la constitución del 2008,’” Quito, 2016.

E. M. Angulo, G. O. Castellar, M. B. Mercedes Cely, L. S. Ibáñez, and L. M. Prasca, “Discoloration of wastewater from a paint industry by the microalgae Chlorella sp Decoloración de aguas residuales de una industria de pinturas por la microalga Chlorella sp,” Rev.MVZ Córdoba, vol. 22, no. 1, pp. 5706–5717, 2017.

E. E. de J. Sedas and U. Ruiz Saucedo, “La remediación de sitios contaminados,”, SEMARNAT. Dec. 2012.

E. Vidal and L. Regaldo, Gestión Ambiental: Introducción a sus instrumentos y fundamentos, UNL. Universidad Nacional del Litoral, 2022. [Online]. Available: www.unl.edu.ar/editorial

J. M. Borja, S. F. Heredia, and M. A. Saez, “Los nanomateriales y sus Aplicaciones en la Remediación Ambiental,” Polo del Conocimiento, vol. 5, pp. 338–370, 2020.

M. Gallegos, A. M. Pérez-Acosta, H. Klappenbach, W. L. López, and C. Bregman, “The Bibliometric Studies in the Field of Ibero-American Psychology: A Metabibliometric Review,” Interdisciplinaria, vol. 37, no. 2, pp. 95–115, 2020, doi: 10.16888/INTERD.2020.37.2.6.

N. Donthu, G. Kumar Badhotiya, S. Kumar, G. Soni, and N. Pandey, “A retrospective overview of Journal of Enterprise Information Management using bibliometric analysis,” Journal of Enterprise Information Management, vol. 35, no. 2, pp. 504–529, 2022, doi: 10.1108/JEIM-09-2020-0375.

H. M. Seriwala, M. S. Khan, W. Shuaib, and S. R. Shah, “Bibliometric analysis of the top 50 cited respiratory articles,” Expert Rev Respir Med, vol. 9, no. 6, pp. 817–824, 2015, doi: 10.1586/17476348.2015.1103649.

E. A. Kumah, R. D. Fopa, S. Harati, P. Boadu, F. V. Zohoori, and T. Pak, “Human and environmental impacts of nanoparticles: a scoping review of the current literature,” BMC Public Health, vol. 23, no. 1, 2023, doi: 10.1186/s12889-023-15958-4.

M. L. Del Prado-Audelo, I. García Kerdan, L. Escutia-Guadarrama, J. M. Reyna-González, J. J. Magaña, and G. Leyva-Gómez, “Nanoremediation: Nanomaterials and Nanotechnologies for Environmental Cleanup,” Front Environ Sci, vol. 9, 2021, doi: 10.3389/fenvs.2021.793765.

A. Inobeme et al., “Recent advances in nanotechnology for remediation of heavy metals,” Environ Monit Assess, vol. 195, no. 1, 2023, doi: 10.1007/s10661-022-10614-7.

H. Borji, G. Ayoub, R. Bilbeisi, and L. Malaeb, “How Effective Are Nanomaterials for the Removal of Heavy Metals from Water and Wastewater?,” Water Air Soil Pollut, pp. 231–330, 2020.

L. E. Macaskie et al., Today’s wastes, tomorrow’s materials for environmental protection, vol. 71–73. 2009. doi: 10.4028/www.scientific.net/AMR.71-73.541.

W.-Q. Shi, L.-Y. Yuan, Z.-J. Li, J.-H. Lan, Y.-L. Zhao, and Z.-F. Chai, “Nanomaterials and nanotechnologies in nuclear energy chemistry,” Radiochim Acta, vol. 100, no. 8–9, pp. 727–736, 2012, doi: 10.1524/ract.2012.1961.

L. R. Khanal, J. A. Sundararajan, and Y. Qiang, “Advanced Nanomaterials for Nuclear Energy and Nanotechnology,” Energy Technology, vol. 8, no. 3, 2020, doi: 10.1002/ente.201901070.

S. Vijayaram et al., “Applications of Green Synthesized Metal Nanoparticles — a Review,” Biol Trace Elem Res, 2023, doi: 10.1007/s12011-023-03645-9.

S. Adabi, A. Yazdanbakhsh, A. Shahsavani, A. Sheikhmohammadi, and M. Hadi, “Removal of heavy metals from the aqueous solution by nanomaterials: a review with analysing and categorizing the studies,” J Environ Health Sci Eng, 2023, doi: 10.1007/s40201-023-00863-0.

J. Qiu, “Nanotechnology development in China: Challenges and opportunities,” Natl Sci Rev, vol. 3, no. 1, pp. 148–152, 2016, doi: 10.1093/nsr/nww007.

J. Li, X. Li, P. Xie, and P. Liu, “Regulation of drug release performance using mixed doxorubicin-doxorubicin dimer nanoparticles as a pH-triggered drug self-delivery system,” J Pharm Anal, vol. 12, no. 1, pp. 122–128, 2022, doi: 10.1016/j.jpha.2021.03.001.

J. Tan, S. Wu, Q. Cai, Y. Wang, and P. Zhang, “Reversible regulation of enzyme-like activity of molybdenum disulfide quantum dots for colorimetric pharmaceutical analysis,” J Pharm Anal, vol. 12, no. 1, pp. 113–121, 2022, doi: 10.1016/j.jpha.2021.03.010.

G. Yu et al., “Applications of nanomaterials for heavy metal removal from water and soil: A review,” Sustainability (Switzerland), vol. 13, no. 2, pp. 1–14, 2021, doi: 10.3390/su13020713.

A. Ghosh and Y. Krishnan, “At a long-awaited turning point,” Nat Nanotechnol, vol. 9, no. 7, pp. 491–494, 2014, doi: 10.1038/nnano.2014.138.

R. Baby, B. Saifullah, and M. Z. Hussein, “Carbon Nanomaterials for the Treatment of Heavy Metal-Contaminated Water and Environmental Remediation,” Nanoscale Res Lett, vol. 14, no. 1, 2019, doi: 10.1186/s11671-019-3167-8.

S. Prasad, R. Saluja, V. Joshi, and J. K. Garg, “Heavy metal pollution in surface water of the Upper Ganga River, India: human health risk assessment,” Environ Monit Assess, vol. 192, no. 11, 2020, doi: 10.1007/s10661-020-08701-8.

M. M. Haque et al., “Variability of water quality and metal pollution index in the Ganges River, Bangladesh,” Environmental Science and Pollution Research, vol. 27, no. 34, pp. 42582–42599, 2020, doi: 10.1007/s11356-020-10060-3.

A. Botle, S. Salgaonkar, R. Tiwari, S. Ambadekar, and G. R. Barabde, “Brief status of contamination in surface water of rivers of India by heavy metals: a review with pollution indices and health risk assessment,” Environ Geochem Health, vol. 45, no. 6, pp. 2779–2801, 2023, doi: 10.1007/s10653-022-01463-x.

P. Kumar et al., “Heavy metal pollution and risks in a highly polluted and populated Indian river–city pair using the systems approach,” Environmental Science and Pollution Research, vol. 29, no. 40, pp. 60212–60231, 2022, doi: 10.1007/s11356-022-20034-2.

X. Liu et al., “Trends for nanotechnology development in China, Russia, and India,” Journal of Nanoparticle Research, vol. 11, no. 8, pp. 1845–1866, 2009, doi: 10.1007/s11051-009-9698-7.

G. Pandey and P. Jain, “Assessing the nanotechnology on the grounds of costs, benefits, and risks,” Beni Suef Univ J Basic Appl Sci, vol. 9, no. 1, 2020, doi: 10.1186/s43088-020-00085-5.

K. Beumer, “Nation-Building and the Governance of Emerging Technologies: the Case of Nanotechnology in India,” Nanoethics, vol. 13, no. 1, pp. 5–19, 2019, doi: 10.1007/s11569-018-0327-8.

T. Rambaran and R. Schirhagl, “Nanotechnology from lab to industry - a look at current trends,” Nanoscale Adv, vol. 4, no. 18, pp. 3664–3675, 2022, doi: 10.1039/d2na00439a.

N. Baig, I. Kammakakam, W. Falath, and I. Kammakakam, “Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges,” Mater Adv, vol. 2, no. 6, pp. 1821–1871, 2021, doi: 10.1039/d0ma00807a.

B. E. Cunningham, E. E. Sharpe, S. M. Brander, W. G. Landis, and S. L. Harper, “Critical gaps in nanoplastics research and their connection to risk assessment,” Frontiers in Toxicology, vol. 5, 2023, doi: 10.3389/ftox.2023.1154538.

S. Linley and N. R. Thomson, “Environmental Applications of Nanotechnology: Nano-enabled Remediation Processes in Water, Soil and Air Treatment,” Water Air Soil Pollut, vol. 232, no. 2, 2021, doi: 10.1007/s11270-021-04985-9.

N. Shahcheraghi, H. Golchin, Z. Sadri, Y. Tabari, F. Borhanifar, and S. Makani, “Nano-biotechnology, an applicable approach for sustainable future,” 3 Biotech, vol. 12, no. 3, 2022, doi: 10.1007/s13205-021-03108-9.

R. Vasquez, “Nanotecnología en procesos ambientales y remediación de la contaminación,” Mundo nano. Revista interdisciplinaria en nanociencias y nanotecnología, vol. 18, 2015.

M. L. Del Prado-Audelo, I. García Kerdan, L. Escutia-Guadarrama, J. M. Reyna-González, J. J. Magaña, and G. Leyva-Gómez, “Nanoremediation: Nanomaterials and Nanotechnologies for Environmental Cleanup,” Front Environ Sci, vol. 9, 2021, doi: 10.3389/fenvs.2021.793765.

T. Chen et al., “Advanced photocatalysts for uranium extraction: Elaborate design and future perspectives,” Coord Chem Rev, vol. 467, 2022, doi: 10.1016/j.ccr.2022.214615.

Y. Hu, D. Tang, Z. Shen, L. Yao, G. Zhao, and X. Wang, “Photochemically triggered self-extraction of uranium from aqueous solution under ambient conditions,” Appl Catal B, vol. 322, 2023, doi: 10.1016/j.apcatb.2022.122092.

L. Yu et al., “Methyl position affect the fluorescence performance of HBT derivatives for the detection of hypochlorite under alkaline condition,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 281, 2022, doi: 10.1016/j.saa.2022.121583.

N. Vela-García, M. C. Guamán-Burneo, and N. P. González-Romero, “Efficient bioremediation from metallurgical effluents through the use of microalgae isolated from the amazonic and highlands of Ecuador | Biorremediación eficiente de efluentes metalúrgicos mediante el uso de microalgas de la amazonía y los andes del Ecua,” Revista Internacional de Contaminacion Ambiental, vol. 35, no. 4, pp. 917–929, 2019, doi: 10.20937/RICA.2019.35.04.11.

M. M. Khin, A. S. Nair, V. J. Babu, R. Murugan, and S. Ramakrishna, “A review on nanomaterials for environmental remediation,” Energy Environ Sci, vol. 5, no. 8, pp. 8075–8109, 2012, doi: 10.1039/c2ee21818f.

F. Fu, D. D. Dionysiou, and H. Liu, “The use of zero-valent iron for groundwater remediation and wastewater treatment: A review,” J Hazard Mater, vol. 267, pp. 194–205, 2014, doi: 10.1016/j.jhazmat.2013.12.062.

Y. Zou et al., “Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review,” Environ Sci Technol, vol. 50, no. 14, pp. 7290–7304, 2016, doi: 10.1021/acs.est.6b01897.

R. A. Crane and T. B. Scott, “Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology,” J Hazard Mater, vol. 211–212, pp. 112–125, 2012, doi: 10.1016/j.jhazmat.2011.11.073.

J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, and P. Kumar, “‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation,” J Nanobiotechnology, vol. 16, no. 1, 2018, doi: 10.1186/s12951-018-0408-4.

D. K. F. Santos, R. D. Rufino, J. M. Luna, V. A. Santos, and L. A. Sarubbo, “Biosurfactants: Multifunctional biomolecules of the 21st century,” Int J Mol Sci, vol. 17, no. 3, 2016, doi: 10.3390/ijms17030401.

M. Medina, L. Galvan, and R. Reyes, “Las nanopartículas y el medio ambiente,” AutanaBooks S.A.S. Revista de la Universidad Experimental Politécnica Antonio José de Sucre, Vice Rectorado Puerto Ordaz, Venezuela, gestionada en Ecuador por AutanaBooks, vol. 19, no. 74, 2015.

Y. Chen, “A Review on the Effects of Nanoparticles on Properties of Self-Compacting Concrete,” in IOP Conference Series: Materials Science and Engineering, 2018. doi: 10.1088/1757-899X/452/2/022134.

S. P. Muñoz-Pérez, Y. M. Gonzales-Pérez, and T. E. Pardo-Muñoz, “The use of Nanomaterials in the construction sector: a literary review• | El uso de los nanomateriales en el sector de la construcción: una revisión literaria,” DYNA (Colombia), vol. 89, no. 221, pp. 101–109, 2022, doi: 10.15446/DYNA.V89N221.100210.

L. Bodnarova and T. Jarolim, “Study the effect of carbon nanoparticles in concrete,” in IOP Conference Series: Materials Science and Engineering, 2018. doi: 10.1088/1757-899X/385/1/012006.

E. Vasquez, “Use of nanomaterials in agriculture and their ecological and environmental implications,” Mundo nano. Revista interdisciplinaria en nanociencias y nanotecnología, vol. 16, no. 30, 2023.

M. Camacho, J. Vega, and A. Campos, “Use of nanomaterials in biopolymers for food packaging applications,” Revista de la Sociedad Química del Perú, vol. 77, no. 4, 2011.

Descargas

Publicado

2024-10-23