Caracterización de celdas solares de perovskita mediante un análisis exploratorio de datos de variables eléctricas, band gap y área

Authors

  • Camilo Hernández Pérez
  • Carlos Castañeda Pico
  • Sergio Castro Casadiego
  • Byron Medina Delgado Universidad Francisco de Paula Santander
  • Alexander Sepúlveda Sepúlveda
  • Erick Reyes Vera

DOI:

https://doi.org/10.15665/rp.v22i2.3485

Keywords:

Exploratory data analysis, machine learning, perovskite solar cell, energy conversion factor.

Abstract

Understanding the behavior of electrical variables in a solar cell contributes to determining its performance, thus patterns are sought to analyze intrinsic material variables and the influence of other variables such as area. Exploratory data analysis is used in information processing to detect patterns and relationships that can be exploited in the development of artificial intelligence. This article aims to characterize single junction perovskite solar cells through an exploratory analysis of the dataset containing electrical variables, band gap, and area from The Perovskita Database. This is achieved using univariate and multivariate visualizations such as violin plots and correlation plots respectively, which relate the mean, median, maximum, and minimum to detect patterns in perovskite solar cell technology and the relationships between the selected variables. The results show practical values of 0.9 V for the open-circuit voltage (Voc), 17.9 for the current density (Jsc), and 1.6 eV for the band gap for perovskite. It is concluded, given the contrast of practical values with the Shockley Queisser theory, that the Voc, Jsc, and band gap variables are intrinsic to single junction perovskite solar cells.

References

International Energy Agency, “Energy Statistics Data Browser”, IEA. Consultado: el 5 de febrero de 2024. [En línea]. Disponible en: https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser

J. Ramanujam et al., “Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review”, Prog Mater Sci, vol. 110, may 2019, doi: 10.1016/j.pmatsci.2019.100619.

A. Khatibi, F. Razi Astaraei, y M. H. Ahmadi, “Generation and combination of the solar cells: A current model review”, Energy Sci Eng, vol. 7, núm. 2, pp. 305–322, abr. 2019, doi: 10.1002/ese3.292.

T. Wu et al., “The Main Progress of Perovskite Solar Cells in 2020–2021”, Nanomicro Lett, vol. 13, núm. 1, dic. 2021, doi: 10.1007/s40820-021-00672-w.

Jung Hyun Suk y Park Nam Gyu, “Perovskite solar cells: From materials to devices”, Nano.Micro Small, vol. 11, núm. 1, pp. 10–25, ene. 2015, doi: 10.1002/smll.201402767.

M. Jeong et al., “Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss”, Science (1979), vol. 369, núm. 6511, pp. 1615–1620, sep. 2020, doi: 10.1126/science.abb7167.

R. Chen et al., “Robust hole transport material with interface anchors enhances the efficiency and stability of inverted formamidinium–cesium perovskite solar cells with a certified efficiency of 22.3%”, Energy Environ Sci, vol. 15, núm. 6, pp. 2567–2580, 2022, doi: 10.1039/D2EE00433J.

N. Parikh et al., “Is machine learning redefining the perovskite solar cells?”, Journal of Energy Chemistry, vol. 66, pp. 74–90, mar. 2022, doi: 10.1016/j.jechem.2021.07.020.

F. Li et al., “Machine Learning (ML)‐Assisted Design and Fabrication for Solar Cells”, ENERGY & ENVIRONMENTAL MATERIALS, vol. 2, núm. 4, pp. 280–291, dic. 2019, doi: 10.1002/eem2.12049.

L. D. Chavarría-Múnera, J. M. Cogollo-Flórez, y A. A. Correa-Espinal, “Metodología de pronóstico escalable con aprendizaje autónomo, integración en la nube y reportes automatizados”, Prospectiva, vol. 18, núm. 2, abr. 2020, doi: 10.15665/rp.v18i2.2243.

Ç. Odabaşı y R. Yıldırım, “Performance analysis of perovskite solar cells in 2013–2018 using machine-learning tools”, Nano Energy, vol. 56, pp. 770–791, feb. 2019, doi: 10.1016/j.nanoen.2018.11.069.

Y. Miyake y A. Saeki, “Machine Learning-Assisted Development of Organic Solar Cell Materials: Issues, Analyses, and Outlooks”, J Phys Chem Lett, vol. 12, núm. 51, pp. 12391–12401, dic. 2021, doi: 10.1021/acs.jpclett.1c03526.

S. Sradhasagar, O. Subhasish Khuntia, S. Biswal, S. Purohit, y A. Roy, “Machine learning-aided discovery of bismuth-based transition metal oxide double perovskites for solar cell applications”, Solar Energy, vol. 267, p. 112209, ene. 2024, doi: 10.1016/j.solener.2023.112209.

M. M. Elsenety, E. Christopoulos, y P. Falaras, “Passivation Engineering Using Ultrahydrophobic Donor–π–Acceptor Organic Dye with Machine Learning Insights for Efficient and Stable Perovskite Solar Cells”, Solar RRL, vol. 7, núm. 10, may 2023, doi: 10.1002/solr.202201016.

J. Ma y D. Guo, “An exploratory data analysis on certified perovskite devices efficiency and I-V metrics: insights into materials engineering and process scaling up”, Solar Energy, vol. 209, pp. 21–29, oct. 2020, doi: 10.1016/j.solener.2020.08.090.

I. Sargin, J. S. McCloy, y S. P. Beckman, “Multivariate analysis: An essential for studying complex glasses”, Journal of the American Ceramic Society, vol. 105, núm. 12, pp. 7196–7210, dic. 2022, doi: 10.1111/jace.18657.

S. Feng y J. Wang, “Prediction of Organic–Inorganic Hybrid Perovskite Band Gap by Multiple Machine Learning Algorithms”, Molecules, vol. 29, núm. 2, p. 499, ene. 2024, doi: 10.3390/molecules29020499.

Alfonso García Marín, “Visualización de Datos Univariantes y Multivariantes, Catálogo de Técnicas”, Trabajo de grado en Ingeniería Informática, Universidad Politécnica de Madrid, Madrid, 2022. Consultado: el 5 de febrero de 2024. [En línea]. Disponible en: https://oa.upm.es/71215/1/TFG_ALFONSO_GARCIA_MARIN.pdf

T. J. Jacobsson et al., “An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles”, Nat Energy, vol. 7, núm. 1, pp. 107–115, dic. 2021, doi: 10.1038/s41560-021-00941-3.

National Renewable Energy Laboratory, “Best Research-Cell Efficiency Chart”, NREL. Consultado: el 5 de febrero de 2024. [En línea]. Disponible en: https://www.nrel.gov/pv/cell-efficiency.html

B. Ehrler, E. Alarcón-Lladó, S. W. Tabernig, T. Veeken, E. C. Garnett, y A. Polman, “Photovoltaics Reaching for the Shockley–Queisser Limit”, ACS Energy Lett, vol. 5, núm. 9, pp. 3029–3033, sep. 2020, doi: 10.1021/acsenergylett.0c01790.

Pachón Pacheco Cristian Elías, “Simulación y diseño de celdas solares basadas en semiconductores In x Ga 1-x N y Si”, Tesis en Magíster en Ciencias - Física, Universidad Nacional de Colombia, Sede Manizales, Manizales, 2021. Consultado: el 5 de febrero de 2024. [En línea]. Disponible en: 1. https://repositorio.unal.edu.co/bitstream/handle/unal/80669/1121902562.2021.pdf?sequence=2&isAllowed=y

Craig K. Enders, Applied Missing Data Analysis. New York, 2022.

R. Escalante, D. Pourjafari, D. Peralta, A. Riquelme, y P. Sánchez-Fernández, “¡La potencia de la irradiante energía solar! Eficiencia Cuántica”, MoleQla: revista de Ciencias de la Universidad Pablo de Olavide 42, sevilla, el 19 de julio de 2021. Consultado: el 5 de febrero de 2024. [En línea]. Disponible en: https://www.upo.es/cms1/export/sites/upo/moleqla/documentos/Numero42/ArticuloDestacado1.pdf

Y. Chen, L. Zhang, Y. Zhang, H. Gao, y H. Yan, “Large-area perovskite solar cells – a review of recent progress and issues”, RSC Adv, vol. 8, núm. 19, pp. 10489–10508, 2018, doi: 10.1039/C8RA00384J.

J.-P. Correa-Baena et al., “Promises and challenges of perovskite solar cells”, Science (1979), vol. 358, núm. 6364, pp. 739–744, nov. 2017, doi: 10.1126/science.aam6323.

S. Lee, S. Bae, D. Kim, y H. Lee, “Historical Analysis of High‐Efficiency, Large‐Area Solar Cells: Toward Upscaling of Perovskite Solar Cells”, Advanced Materials, vol. 32, núm. 51, dic. 2020, doi: 10.1002/adma.202002202.

H. Lu, A. Krishna, S. M. Zakeeruddin, M. Grätzel, y A. Hagfeldt, “Compositional and Interface Engineering of Organic-Inorganic Lead Halide Perovskite Solar Cells”, iScience, vol. 23, núm. 8, p. 101359, ago. 2020, doi: 10.1016/j.isci.2020.101359.

Marcus Chuang, “Shockley-Queisser-limit”, GITHUB. Consultado: el 5 de febrero de 2024. [En línea]. Disponible en: https://github.com/marcus-cmc/Shockley-Queisser-limit

Y. Zhao, F. Ma, F. Gao, Z. Yin, X. Zhang, y J. You, “Research progress in large-area perovskite solar cells”, Photonics Res, vol. 8, núm. 7, p. A1, jul. 2020, doi: 10.1364/PRJ.392996.

Champion Photovoltaic Module Efficiency Chart, “Champion Photovoltaic Module Efficiency Chart”, NREL.

Published

2024-10-23