POLYLACTIC ACID AND POLYCAPROLACTONE NANOCOMPOSITES FOR SUBDERMAL TISSUE REGENERATION

Autores/as

  • Jorge Iván Castro
  • Andrés Felipe Niebles Navas
  • Carlos Humberto Valencia
  • Diego López Tenorio
  • CARLOS DAVID GRANDE TOVAR Universidad del Atlántico

DOI:

https://doi.org/10.15665/rp.v22i2.3432

Resumen

Los defectos tisulares en la piel causados por accidentes o enfermedades han abierto diferentes vías de investigación para la construcción de nuevos materiales biocompatibles. En este sentido, presentamos la síntesis de cuatro membranas de tipo composite basadas en ácido poliláctico (PLA), policaprolactona (PCL), aceite esencial de jengibre (GEO) y nanopartículas de óxido de zinc (ZnO-NPs) para la regeneración de tejido subdérmico. La caracterización química se realizó mediante FTIR, XRD, TGA y DSC. la incorporación de GEO y ZnO-NPs en las formulaciones, demostró un aumento de la banda C-O-C así como la disminución de la banda a 1722 cm-1 correspondiente a la interacción entre el grupo C=O y las ZnO-NPs. El (TGA) y (DSC) confirmaron incisiones en la espina dorsal de la matriz polimérica debido a la interacción sobre el grupo carbonilo por parte de las ZnO-NPs. Además, la introducción de GEO en las formulaciones disminuye la estabilidad térmica, debido a la introducción de espacios intermoleculares. El estudio morfológico mediante microscopía electrónica de barrido (SEM), excepto en el caso de F1, mostró una microestructura porosa que confirma la interacción entre las ZnO-NPs, la GEO y los grupos carbonilo de la matriz polimérica, beneficiosa para la regeneración tisular. El examen de las membranas implantadas mediante análisis histológico demostró su biocompatibilidad y biodegradabilidad 60 días después de la implantación. La degradación simultánea y la formación de fibras de colágeno de tipo I, con el aumento de los vasos sanguíneos y la inflamación, indican un material altamente biocompatible y reabsorbible.

Citas

Mahmoudi, N.; Eslahi, N.; Mehdipour, A.; Mohammadi, M.; Akbari, M.; Samadikuchaksaraei, A.; Simchi, A. Temporary skin grafts based on hybrid graphene oxide natural biopolymer nanofibers as adequate wound healing substitutes: pre-clinical and pathological studies in animal models. J. Mater. Sci. Mater. Med. 2017, 28, 1–13.

Bacakova, L.; Pajorova, J.; Bacakova, M.; Skogberg, A.; Kallio, P.; Kolarova, K.; Svorcik, V. Versa-tile application of nanocellulose: From industry to skin tissue engineering and wound healing. Nano-materials 2019, 9, 164.

Zhang, Y.; Poon, K.; Masonsong, G.S.P.; Ramaswamy, Y.; Singh, G. Sustainable Nanomaterials for Biomedical Applications. Pharmaceutics 2023, 15, 922.

O’Brien, F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today 2011, 14, 88–95, doi:10.1016/S1369-7021(11)70058-X.

Arif, U.; Haider, S.; Haider, A.; Khan, N.; Alghyamah, A.A.; Jamila, N.; Khan, M.I.; Almasry, W.A.; Kang, I.-K. Biocompatible polymers and their potential biomedical applications: A review. Curr. Pharm. Des. 2019, 25, 3608–3619.

Grande-Tovar, C.D.; Castro, J.I.; Valencia Llano, C.H.; Tenorio, D.L.; Saavedra, M.; Zapata, P.A.; Chaur, M.N. Polycaprolactone (PCL)-Polylactic Acid (PLA)-Glycerol (Gly) Composites Incorporated with Zinc Oxide Nanoparticles (ZnO-NPs) and Tea Tree Essential Oil (TTEO) for Tissue Engineering Applications. Pharmaceutics 2022, 15, 43.

Tovar, C.D.G.; Castro, J.I.; Valencia, C.H.; Porras, D.P.N.; Hernandez, J.H.M.; Valencia, M.E.; Ve-lásquez, J.D.; Chaur, M.N. Preparation of chitosan/poly(Vinyl alcohol) nanocomposite films incorporated with oxidized carbon nano-onions (multi-layer fullerenes) for tissue-engineering applications. Biomolecules 2019, 9, doi:10.3390/biom9110684.

Martin, I.; Wendt, D.; Heberer, M. The role of bioreactors in tissue engineering. TRENDS Biotechnol. 2004, 22, 80–86.

Deb, P.; Deoghare, A.B.; Borah, A.; Barua, E.; Das Lala, S. Scaffold Development Using Biomateri-als: A Review. Mater. Today Proc. 2018, 5, 12909–12919, doi:10.1016/j.matpr.2018.02.276.

Avérous, L.; Pollet, E. Environmental silicate nano-biocomposites; Springer, 2012; Vol. 1;.

Santoro, M.; Shah, S.R.; Walker, J.L.; Mikos, A.G. Poly (lactic acid) nanofibrous scaffolds for tissue engineering. Adv. Drug Deliv. Rev. 2016, 107, 206–212.

Fortelny, I.; Ujcic, A.; Fambri, L.; Slouf, M. Phase structure, compatibility, and toughness of PLA/PCL blends: A review. Front. Mater. 2019, 6, 206.

Mina Hernandez, J.H. Effect of the incorporation of polycaprolactone (Pcl) on the retrogradation of binary blends with cassava thermoplastic starch (tps). Polymers (Basel). 2021, 13, 1–19, doi:10.3390/polym13010038.

Fambri, L.; Migliaresi, C. Crystallization and thermal properties. Poly (Lactic Acid) Synth. Struct. Prop. Process. Appl. End Life 2022, 135–151.

Standau, T.; Zhao, C.; Murillo Castellón, S.; Bonten, C.; Altstädt, V. Chemical modification and foam processing of polylactide (PLA). Polymers (Basel). 2019, 11, 306.

Vasile, C.; Râpă, M.; Ştefan, M.; Stan, M.; Macavei, S.; Darie-Niţă, R.N.; Barbu-Tudoran, L.; Vodnar, D.C.; Popa, E.E.; Ştefan, R. New PLA/ZnO: Cu/Ag bionanocomposites for food packaging. Express Polym. Lett. 2017, 11.

Spoială, A.; Ilie, C.-I.; Trușcă, R.-D.; Oprea, O.-C.; Surdu, V.-A.; Vasile, B. Ștefan; Ficai, A.; Ficai, D.; Andronescu, E.; Dițu, L.-M. Zinc oxide nanoparticles for water purification. Materials (Basel). 2021, 14, 4747.

Alharthi, M.N.; Ismail, I.; Bellucci, S.; Khdary, N.H.; Abdel Salam, M. Biosynthesis micro-wave-assisted of zinc oxide nanoparticles with ziziphus jujuba leaves extract: Characterization and photocatalytic application. Nanomaterials 2021, 11, 1682.

Vasile, O.-R.; Andronescu, E.; Ghitulica, C.; Vasile, B.S.; Oprea, O.; Vasile, E.; Trusca, R. Synthesis and characterization of nanostructured zinc oxide particles synthesized by the pyrosol method. J. Na-noparticle Res. 2012, 14, 1–13.

Serb, M.-D.; Mueller, P.; Trusca, R.; Oprea, O.; Dumitru, F. Study of thermal decomposition of a zinc (ii) monomethyl terephthalate complex, [zn (ch3o-co-c6h4coo)(2)(oh2)(3)] center dot 2h (2) o. J. Therm. Anal. Calorim. 2015, 121, 691–695.

Motelica, L.; Vasile, B.-S.; Ficai, A.; Surdu, A.-V.; Ficai, D.; Oprea, O.-C.; Andronescu, E.; Jinga, D.C.; Holban, A.M. Influence of the alcohols on the zno synthesis and its properties: The photocata-lytic and antimicrobial activities. Pharmaceutics 2022, 14, 2842.

Rojas, K.; Canales, D.; Amigo, N.; Montoille, L.; Cament, A.; Rivas, L.M.; Gil-Castell, O.; Reyes, P.; Ulloa, M.T.; Ribes-Greus, A. Effective antimicrobial materials based on low-density polyethylene (LDPE) with zinc oxide (ZnO) nanoparticles. Compos. Part B Eng. 2019, 172, 173–178.

Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mo-hamad, D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro Lett. 2015, 7, 219–242.

Abou Elmaaty, T.M.; Mandour, B.A. ZnO and TiO2 nanoparticles as textile protecting agents against UV radiation: A review. Asian J. Chem. Sci 2018, 4, 1–14.

Kim, I.; Viswanathan, K.; Kasi, G.; Thanakkasaranee, S.; Sadeghi, K.; Seo, J. ZnO nanostructures in active antibacterial food packaging: preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Rev. Int. 2022, 38, 537–565.

Roeinfard, M.; Bahari, A. Nanostructural characterization of the Fe3O4/ZnO magnetic nanocomposite as an application in medicine. J. Supercond. Nov. Magn. 2017, 30, 3541–3548.

Shankar, S.; Wang, L.-F.; Rhim, J.-W. Incorporation of zinc oxide nanoparticles improved the me-chanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocompo-site films. Mater. Sci. Eng. C 2018, 93, 289–298.

Marra, A.; Rollo, G.; Cimmino, S.; Silvestre, C. Assessment on the effects of ZnO and Coated ZnO particles on iPP and PLA properties for application in food packaging. Coatings 2017, 7, 29.

Murariu, M.; Doumbia, A.; Bonnaud, L.; Dechief, A.; Paint, Y.; Ferreira, M.; Campagne, C.; Devaux, E.; Dubois, P. High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules 2011, 12, 1762–1771.

Pantani, R.; Gorrasi, G.; Vigliotta, G.; Murariu, M.; Dubois, P. PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics. Eur. Polym. J. 2013, 49, 3471–3482.

Paidari, S.; Zamindar, N.; Tahergorabi, R.; Kargar, M.; Ezzati, S.; Shirani, N.; Musavi, S.H. Edible coating and films as promising packaging: a mini review. J. Food Meas. Charact. 2021, 15, 4205–4214.

Singh, G.; Maurya, S.; Catalan, C.; De Lampasona, M.P. Studies on essential oils, Part 42: chemical, antifungal, antioxidant and sprout suppressant studies on ginger essential oil and its oleoresin. Flavour Fragr. J. 2005, 20, 1–6.

Li, X.; Tu, Z.-C.; Sha, X.-M.; Ye, Y.-H.; Li, Z.-Y. Flavor, antimicrobial activity and physical proper-ties of gelatin film incorporated with of ginger essential oil. J. Food Sci. Technol. 2022, 1–10.

Bonilla, J.; Poloni, T.; Lourenço, R. V; Sobral, P.J.A. Antioxidant potential of eugenol and ginger essential oils with gelatin/chitosan films. Food Biosci 23: 107–114 2018.

Souza, V.G.L.; Pires, J.R.A.; Rodrigues, C.; Rodrigues, P.F.; Lopes, A.; Silva, R.J.; Caldeira, J.; Du-arte, M.P.; Fernandes, F.B.; Coelhoso, I.M. Physical and morphological characterization of chi-tosan/montmorillonite films incorporated with ginger essential oil. Coatings 2019, 9, 700.

Castro, J.I.; Valencia-Llano, C.H.; Valencia Zapata, M.E.; Restrepo, Y.J.; Mina Hernandez, J.H.; Na-via-Porras, D.P.; Valencia, Y.; Valencia, C.; Grande-Tovar, C.D. Chitosan/Polyvinyl Alcohol/Tea Tree Essential Oil Composite Films for Biomedical Applications. Polymers (Basel). 2021, 13, 3753.

Becheri, A.; Dürr, M.; Lo Nostro, P.; Baglioni, P. Synthesis and characterization of zinc oxide nano-particles: application to textiles as UV-absorbers. J. Nanoparticle Res. 2008, 10, 679–689.

Yañez, D.; Guerrero, S.; Lieberwirth, I.; Ulloa, M.T.; Gomez, T.; Rabagliati, F.M.; Zapata, P.A. Pho-tocatalytic inhibition of bacteria by TiO2 nanotubes-doped polyethylene composites. Appl. Catal. A Gen. 2015, 489, 255–261.

Grande-Tovar, C.D.; Castro, J.I.; Valencia Llano, C.H.; Tenorio, D.L.; Saavedra, M.; Zapata, P.A.; Chaur, M.N. Polycaprolactone (PCL)-Polylactic acid (PLA)-Glycerol (Gly) Composites Incorporated with Zinc Oxide Nanoparticles (ZnO-NPs) and Tea Tree Essential Oil (TTEO) for Tissue Engineering Applications. Pharmaceutics 2023, 15, 43.

De Jong, W.H.; Carraway, J.W.; Geertsma, R.E. In vivo and in vitro testing for the biological safety evaluation of biomaterials and medical devices. In Biocompatibility and Performance of Medical De-vices; Elsevier, 2020; pp. 123–166.

AEN/CTN Evaluación biológica de los productos sanitarios Parte: Parte 6: Ensayos relativos a los efectos locales después de la implantación; 1995; Vol. 51;.

Du Sert, N.P.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The arrive guidelines 2.0: Updated guidelines for reporting animal re-search. PLoS Biol. 2020, 18, 1–12, doi:10.1371/journal.pbio.3000410.

Raina, V.K.; Kumar, A.; Aggarwal, K.K. Essential oil composition of ginger (Zingiber officinale Roscoe) rhizomes from different place in India. J. Essent. Oil Bear. Plants 2005, 8, 187–191.

Chieng, B.W.; Ibrahim, N.A.; Wan Yunus, W.M.Z.; Hussein, M.Z. Poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers (Basel). 2013, 6, 93–104.

Visan, A.I.; Popescu-Pelin, G.; Gherasim, O.; Mihailescu, A.; Socol, M.; Zgura, I.; Chiritoiu, M.; Elena Sima, L.; Antohe, F.; Ivan, L. Long-term evaluation of dip-coated pcl-blend-peg coatings in simulated conditions. Polymers (Basel). 2020, 12, 717.

Pardini, F.; Iregui, Á.; Faccia, P.; Amalvy, J.; González, A.; Irusta, L. Development and characteriza-tion of electrosprayed microcaspules of poly ε-caprolactone with citronella oil for mosquito-repellent application. Int. J. Polym. Anal. Charact. 2021, 26, 497–516, doi:10.1080/1023666X.2021.1916726.

Kaczmarek, H.; Nowicki, M.; Vuković-Kwiatkowska, I.; Nowakowska, S. Crosslinked blends of poly (lactic acid) and polyacrylates: AFM, DSC and XRD studies. J. Polym. Res. 2013, 20, 1–12.

Ocelić, V.; Vilko, B.; Dajana, M.; Grgić, K.; Ivančić, A. Biodegradable Polymer Blends Based on Thermoplastic Starch. J. Polym. Environ. 2020, 29 (2), 492–508, doi:10.1007/s10924-020-01874-w.

Jamnongkan, T.; Jaroensuk, O.; Khankhuean, A.; Laobuthee, A.; Srisawat, N.; Pangon, A.; Mongkholrattanasit, R.; Phuengphai, P.; Wattanakornsiri, A.; Huang, C.-F. A Comprehensive Evalua-tion of Mechanical, Thermal, and Antibacterial Properties of PLA/ZnO Nanoflower Biocomposite Filaments for 3D Printing Application. Polymers (Basel). 2022, 14, 600.

Kazemi-Pasarvi, S.; Golshan Ebrahimi, N.; Shahrampour, D.; Arab-Bafrani, Z. Reducing cytotoxicity of poly (lactic acid)-based/zinc oxide nanocomposites while boosting their antibacterial activities by thymol for biomedical applications. Int. J. Biol. Macromol. 2020, 164, 4556–4565, doi:10.1016/j.ijbiomac.2020.09.069.

Oshani, B.N.; Davachi, S.M.; Hejazi, I.; Seyfi, J.; Khonakdar, H.A.; Abbaspourrad, A. Enhanced compatibility of starch with poly (lactic acid) and poly (ɛ-caprolactone) by incorporation of POSS nanoparticles: study on thermal properties. Int. J. Biol. Macromol. 2019, 141, 578–584.

Yang, S. lin; Wu, Z.H.; Yang, W.; Yang, M.B. Thermal and mechanical properties of chemical cross-linked polylactide (PLA). Polym. Test. 2008, 27, 957–963, doi:10.1016/j.polymertesting.2008.08.009.

Motelica, L.; Ficai, D.; Oprea, O.; Ficai, A.; Trusca, R.-D.; Andronescu, E.; Holban, A.M. Biode-gradable alginate films with ZnO nanoparticles and citronella essential oil—A novel antimicrobial structure. Pharmaceutics 2021, 13, 1020.

Thiyagu, T.T.; Uvaraja, G.G.V.C.; Arun, T.M.V.R. Effect of ­ SiO 2 / TiO 2 and ZnO Nanoparticle on Cardanol Oil Compatibilized PLA / PBAT Biocomposite Packaging Film. 2022, 3795–3808, doi:10.1007/s12633-021-01577-4.

Khan, A.R.; Nadeem, M.; Aqeel Bhutto, M.; Yu, F.; Xie, X.; El-Hamshary, H.; El-Faham, A.; Ibrahim, U.A.; Mo, X. Physico-chemical and biological evaluation of PLCL/SF nanofibers loaded with orega-no essential oil. Pharmaceutics 2019, 11, doi:10.3390/pharmaceutics11080386.

Yasuniwa, M.; Tsubakihara, S.; Iura, K.; Ono, Y.; Dan, Y.; Takahashi, K. Crystallization behavior of poly(l-lactic acid). Polymer (Guildf). 2006, 47, 7554–7563, doi:https://doi.org/10.1016/j.polymer.2006.08.054.

Harris, A.M.; Lee, E.C. Improving the mechanical performance of injection molded PLA by controlling crystallinity. J. Appl. Polym. Sci. 2008, 107, 2246–2255.

Cipriano, T.F.; Silva, A.L.N. da; Silva, A.H.M. da F.T. da; Sousa, A.M.F. de; Silva, G.M. da; Rocha, M.G. Thermal, rheological and morphological properties of poly (lactic acid)(PLA) and talc compo-sites. Polímeros 2014, 24, 276–282.

Rodríguez-Tobías, H.; Morales, G.; Ledezma, A.; Romero, J.; Saldívar, R.; Langlois, V.; Renard, E.; Grande, D. Electrospinning and electrospraying techniques for designing novel antibacterial poly (3-hydroxybutyrate)/zinc oxide nanofibrous composites. J. Mater. Sci. 2016, 51, 8593–8609.

Yu, W.; Lan, C.-H.; Wang, S.-J.; Fang, P.-F.; Sun, Y.-M. Influence of zinc oxide nanoparticles on the crystallization behavior of electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibers. Polymer (Guildf). 2010, 51, 2403–2409.

Zhou, D.; Keller, A.A. Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res. 2010, 44, 2948–2956, doi:10.1016/j.watres.2010.02.025.

Dadashi, P.; Babaei, A.; Abdolrasouli, M.H. Investigating the hydrolytic degradation of PLA/PCL/ZnO nanocomposites by using viscoelastic models. Polym. Eng. Sci. 2022, 62, 869–882, doi:10.1002/pen.25893.

Liu, L.; Jin, T.Z.; Coffin, D.R.; Hicks, K.B. Preparation of antimicrobial membranes: coextrusion of poly (lactic acid) and nisaplin in the presence of plasticizers. J. Agric. Food Chem. 2009, 57, 8392–8398.

Lu, W.; Cui, R.; Zhu, B.; Qin, Y.; Cheng, G.; Li, L.; Yuan, M. Influence of clove essential oil immo-bilized in mesoporous silica nanoparticles on the functional properties of poly (lactic acid) biocompo-site food packaging film. J. Mater. Res. Technol. 2021, 11, 1152–1161.

Li, Y.; Liu, Y.; Campos de Souza, S.; Chao, T.; Dong, L.; Sun, G.; Wang, C.; Niu, Y. Differential Foreign Body Reactions between Branched and Linear Glucomannan Scaffolds. J. Funct. Biomater. 2022, 13, doi:10.3390/jfb13040293.

Stieglitz, T.; Schuettler, M. Material-tissue interfaces in implantable systems; Woodhead Publishing Limited, 2013; ISBN 9781845699871.

Mariani, E.; Lisignoli, G.; Borzì, R.M.; Pulsatelli, L. Biomaterials: Foreign bodies or tuners for the immune response? Int. J. Mol. Sci. 2019, 20, doi:10.3390/ijms20030636.

Barral, V.; Dropsit, S.; Cayla, A.; Campagne, C.; Devaux, É. Study of the influence of pcl on the in vitro degradation of extruded pla monofilaments and melt-spun filaments. Polymers (Basel). 2021, 13, 1–15, doi:10.3390/polym13020171.

Laurenti, M.; Cauda, V. ZnO nanostructures for tissue engineering applications. Nanomaterials 2017, 7, doi:10.3390/nano7110374.

Xu, N.; Lei, H.; Li, X.; Wang, Q.; Liu, M.; Wang, M. Protective effects of ginger essential oil (Geo) against chemically-induced cutaneous inflammation. Food Sci. Technol. 2019, 39, 371–377, doi:10.1590/fst.14318.

Descargas

Publicado

2024-08-20