Petrography and geochemistry of the Golero’s Rhyolite Unit north of Valledupar city, Cesar, Colombia

Autores/as

  • Elías Ernesto Rojas Martínez
  • DINO CARMELO MANCO JARABA Universidad de La Guajira
  • Frank David Lascarro-Navarro
  • Libardo Lascarro-Navarro
  • Luis Miguel Gutiérrez-Pacheco
  • Carlos Alberto Rios Reyes

DOI:

https://doi.org/10.15665/rp.v22i2.3301

Resumen

The Golero’s Rhyolite is a lithological unit of heterogeneous composition, consisting of basaltic, dacitic, andesitic and rhyolitic volcanic rocks that outcrops on the eastern and southern flank of the Sierra Nevada de Santa Marta, northwestern tip of South America. The study area comprises the rural area north of Valledupar City, Cesar, Colombia. The objective of this re-search is to analyze petrographically and geochemically the volcanic rocks of the Golero’s Rhyolite Unit north of the city of Valledupar, Cesar, Colombia. For the execution of the research, we initially proceeded with a compilation of cartographic information at a scale of 1:25,000, where lithological and structural characteristics were identified; later, field trips and collection of 22 samples for compositional and textural classification, selecting 9 specimens for micropetrographic and geochemical analysis (X-ray fluorescence). Macroscopic and microscopic petrographic analysis evidences that they consist of aphanitic matrix composed mostly of plagioclase, with porphyritic inequigranular and sometimes bimodal inequigranular texture or grain size distribution, in general there are euhedral to subhedral plagioclase minerals, epidote altering the plagioclase, subhedral hornblende, subhedral feldspar, anhedral quartz, and in smaller proportion hematite, magnetite and calcite in veinlets. Within the elements variation diagrams the samples are located in the same crystallization sequence, suggesting that they are part of the same magmatism and fractionation of the rocks from SiO2 values of 44.63 wt% to 63.07 wt %; (basalts to dacites). The rocks of the Golero’s Rhyolite Unit were generated from a calc-alkaline magma in an intraplate tectonic environment, possibly influenced by oceanic islands (OIA) product of continental rifting.

Citas

F. E. Audemard and F. A. Audemard, “Structure of the Mérida Andes, Venezuela: relations with the South America–Caribbean geodynamic interaction,” Tectonophysics, vol. 345, no. 1, pp. 1–26, 2002, doi: https://doi.org/10.1016/S0040-1951(01)00218-9.

A. Taboada et al., “Geodynamics of the northern Andes,” Tectonics, vol. 19, no. 5, pp. 787–813, 2000.

B. T. Malfait and M. G. Dinkelman, “Circum-Caribbean Tectonic and Igneous Activity and the Evolution of the Caribbean Plate,” GSA Bull., vol. 83, no. 2, pp. 251–272, Feb. 1972, doi: 10.1130/0016-7606(1972)83[251:CTAIAA]2.0.CO;2.

J. Pindell, L. Kennan, W. Maresch, K. Stanek, G. Draper, and R. Higgs, “Plate-kinematics and crustal dynamics of circum-Caribbean arc-continent interactions: Tectonic controls on basin development in Proto-Caribbean margins,” Spec. Pap. Geol. Soc. Am., vol. 394, pp. 7–52, Jan. 2005, doi: 10.1130/2005.2394(01).

C. N. G. Plata, “Estratigrafía y análisis de proveniencia de la Formación Los Indios, y su relación con la evolución tectónica de la Sierra Nevada de Santa Marta (Colombia),” Universidad Nacional de Colombia, 2017. [Online]. Available: http://bdigital.unal.edu.co/59835/

D. Quandt et al., “The geochemistry and geochronology of Early Jurassic igneous rocks from the Sierra Nevada de Santa Marta, NW Colombia, and tectono-magmatic implications,” J. South Am. Earth Sci., vol. 86, pp. 216–230, 2018, doi: https://doi.org/10.1016/j.jsames.2018.06.019.

C. M. Tschanz, R. F. Marvin, and B. Cruz, “Geology of the Sierra Nevada de Santa Marta (Colombia)-Informe 1829,” INGEOMINAS, Bogotá, 1969.

C. Tschanz, A. Jimeno, J. Cruz, and U.S. Geological Survey, “Mapa Geológico de Reconocimiento de la Sierra Nevada de Santa Marta.,” Bogotá D.C., Colombia, 1969.

G. Bayona et al., “Paleomagnetic data and K-Ar ages from Mesozoic units of the Santa Marta massif: A preliminary interpretation for block rotation and translations,” J. South Am. Earth Sci., vol. 29, no. 4, pp. 817–831, 2010, doi: 10.1016/j.jsames.2009.10.005.

F. Colmenares et al., “Geología De La Planchas 11, 12, 13, 14, 18, 19, 20, 21, 25, 26, 27, 33 Y 34,” Proyecto:“Evolución Geohistórica de la Sierra Nevada de Santa Marta”. Ministerio de Minas y Energía, Instituto Colombiano de Geología y Ministerio e Ingeominas, 2007. http://recordcenter.sgc.gov.co/B12/23008010018162/documento/pdf/2105181621101000.pdf (accessed Nov. 15, 2022).

L. Radelli, “Introducción al estudio de la geología y de la petrografía del Macizo de Santa Marta (Magdalena-Colombia),” Geol. Colomb., vol. 2, no. 0 SE-Artículos, pp. 41–115, May 1962, [Online]. Available: https://revistas.unal.edu.co/index.php/geocol/article/view/30349

D. Barrero, “Geology of the Central Western Cordillera, west of Buga and Roldanillo, Colombia,” Ministerio de Minas y Energia, Instituto Nacional de Investigaciones Geologico-Mineras, Bogotá D.C., Colombia, 1979. [Online]. Available: http://books.google.com/books?id=G8lOAQAAIAAJ

J. F. Toussaint and J. J. Restrepo, “Modelos orogénicos de tectónica de placas en los andes colombianos,” Bol. Cienc. Tierra, vol. 1, pp. 1–47, 1976.

A. Estrada, Geology and plate tectonics history of the Colombian Andes. Stanford University, 1972.

C. Macla and J. Mojica, “Nuevos puntos de vista sobre el magmatismo Triasico Superior (Fm. Saldana), Valle Superior del Magdalena, Colombia,” Zbl. Geol. Palaont. 1, pp. 243–251, 1981.

A. Cardona et al., “Permian to Triassic I to S-type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: Tectonic setting and implications within Pangea paleogeography,” J. South Am. Earth Sci., vol. 29, no. 4, pp. 772–783, 2010, doi: 10.1016/j.jsames.2009.12.005.

A. Piraquive, A. Kammer, A. Von Quadt, and M. Bernet, “Permo-Triassic evolution in the Sierra Nevada de Santa Marta, from the Alleghenides collision to Pangaea break-up,” Universidad Nacional de Colombia - Université Grenoble-Alpes, 2016.

A. Cardona et al., “Tectonomagmatic setting and provenance of the Santa Marta Schists, northern Colombia: Insights on the growth and approach of Cretaceous Caribbean oceanic terranes to the South American continent,” J. South Am. Earth Sci., vol. 29, no. 4, pp. 784–804, 2010, doi: 10.1016/j.jsames.2009.08.012.

J. Duque-Trujillo, “Geocronología (U/Pb y 40Ar/39Ar) y geoquímica de los intrusivos paleógenos de la Sierra Nevada de Santa Marta y sus relaciones con la tectónica del Caribe y el arco magmático circun-caribeñ,” Universidad Nacional Autónoma de México, 2009.

J. Duque-Trujillo, T. Orozco-Esquivel, C. Sánchez, and A. Cárdenas-Rozo, “Paleogene Magmatism of the Maracaibo Block and Its Tectonic Significance,” Geol. Tectonics Northwest. South Am., pp. 551–561, 2019, doi: https://doi.org/10.1007/978-3-319-76132-9_7.

C. Tschanz, R. Marvin, J. Cruz B., H. Mehnert, and G. Cebula, “Geologic Evolution of the Sierra Nevada de Santa Marta, Northeastern Colombia,” GSA Bull., vol. 85, no. 2, pp. 273–284, Feb. 1974, doi: 10.1130/0016-7606(1974)85<273:GEOTSN>2.0.CO;2.

E. Cortes Castillo, “Análisis Petrogenético de las Denominadas ‘Anortositas’ Aflorantes en la Vertiente Occidental de La Sierra Nevada de Santa Marta - Sector Río Sevilla - El Palmor (Colombia),” Universidad Nacional de Colombia, 2013. [Online]. Available: http://www.bdigital.unal.edu.co/39643/

O. Ordóñez, M. Pimentel, and R. de Moraes, “Granulitas de los mangos, un fragmento grenvilliano en la parte oriental de la Sierra Nevada de Santa Marta,” Rev. la Acad. Colomb. Ciencias Exactas, Fis. y Nat., vol. 26, no. 99, pp. 169–179, Jul. 2002.

F. Lascarro-Navarro, M. Lozada-Molina, D. Manco-Jaraba, and E. Rojas-Martínez, “Análisis estructural y morfotectónico al norte de Valledupar-Cesar, Colombia: contribución a los estudios de peligrosidad sísmica de la Falla Río Seco,” Ingeniare. Rev. Chil. Ing., vol. 28, no. 2, pp. 255–267, 2020, doi: 10.4067/s0718-33052020000200255.

K. M. Teheran Ochoa and L. C. Tapia Vela, “Análisis neotectónico de la falla río seco, ciudad de Valledupar, Cesar,” Investig. e Innovación en Ing., vol. 6, no. 1 SE-Artículos, pp. 40–57, Jan. 2018, doi: 10.17081/invinno.6.1.2774.

A. Arias and C. Morales, Mapa geológico generalizado del departamento del Cesar - Memoria explicativa. Bogotá D.C., Colombia: Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS) ;, 1999. Accessed: Sep. 21, 2020. [Online]. Available: https://catalogo.sgc.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=14212

R. Le Maitre, A. Streckeisen, B. Zanettin, M. Le Bas, B. Bonin, and P. Bateman, Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd ed. Cambridge: Cambridge University Press, 2002. doi: DOI: 10.1017/CBO9780511535581.

R. Kretz, “Symbols for rock-forming minerals,” Am. Mineral., vol. 68, no. 1–2, pp. 277–279, 1983, [Online]. Available: http://www.minsocam.org/ammin/AM68/AM68_277.pdf

A. Streckeisen, “Classification of the common igneous rocks by means of their chemical composition; a provisional attempt,” p. shefte. 1, Pages 1-15. 1976., 1976.

E. A. K. Middlemost, “Naming materials in the magma/igneous rock system,” Earth-Science Rev., vol. 37, no. 3, pp. 215–224, 1994, doi: https://doi.org/10.1016/0012-8252(94)90029-9.

N. L. Bowen, “The Later Stages of the Evolution of the Igneous Rocks,” J. Geol., vol. 23, no. S8, pp. 1–91, 1915, doi: 10.1086/622298.

A. Harker, The natural history of igneous rocks. London, 1909.

N. L. Bowen, “The Evolution of the Igneous Rocks,” Nature, vol. 124, no. 3126, pp. 474–475, 1929, doi: 10.1038/124474a0.

A. Miyashiro, “Volcanic rock series in island arcs and active continental margins,” Am. J. Sci., vol. 274, no. 4, pp. 321–355, Apr. 1974, doi: 10.2475/ajs.274.4.321.

A. Peccerillo and S. R. Taylor, “Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey,” Contrib. to Mineral. Petrol., vol. 58, no. 1, pp. 63–81, 1976, doi: 10.1007/BF00384745.

M. W. Ali-Bik and S. S. Gabr, “Spectral analyses, geology and petrology of the Gulf of Suez rift-related Oligo-Miocene basalts at Abu Zenima area, west central Sinai, Egypt,” Egypt. J. Remote Sens. Sp. Sci., vol. 25, no. 1, pp. 85–96, 2022, doi: https://doi.org/10.1016/j.ejrs.2022.01.002.

E. D. Mullen, “MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis,” Earth Planet. Sci. Lett., vol. 62, no. 1, pp. 53–62, 1983, doi: https://doi.org/10.1016/0012-821X(83)90070-5.

J. A. Pearce and J. R. Cann, “Tectonic setting of basic volcanic rocks determined using trace element analyses,” Earth Planet. Sci. Lett., vol. 19, no. 2, pp. 290–300, 1973, doi: https://doi.org/10.1016/0012-821X(73)90129-5.

T. H. Pearce, B. E. Gorman, and T. C. Birkett, “The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks,” Earth Planet. Sci. Lett., vol. 36, no. 1, pp. 121–132, 1977, doi: https://doi.org/10.1016/0012-821X(77)90193-5.

J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks,” J. Petrol., vol. 25, no. 4, pp. 956–983, Nov. 1984, doi: 10.1093/petrology/25.4.956.

J. Toussaint and J. Restrepo, The Colombian Andes During Cretaceous Times. 1994. doi: https://doi.org/10.1007/978-3-322-85472-8_2.

Descargas

Publicado

2024-08-20