EXTRUSIÓN Y CALIDAD FÍSICA EN FORMULACIONES DE ALIMENTO PARA ENGORDE DE CAMARONES: UNA REVISIÓN

Autores/as

DOI:

https://doi.org/10.15665/rp.v22i2.3267

Palabras clave:

Camarones, extrusión, alimentos, propiedades físicas, condiciones de extrusión

Resumen

Se revisaron las publicaciones recientes acerca de las características físicas de alimento concentrado para camarón de cultivo. El enfoque de la revisión se orientó hacia el análisis de los efectos y correlaciones entre la composición del alimento, las condiciones y parámetros del proceso de extrusión sobre la calidad física de los pellets. La producción de alimento para peces y camarones está utilizando la tecnología de extrusión por sus ventajas sobre otros métodos de procesamiento. Los estudios presentan un nivel óptimo requerido de proteína entre 32-35%, contenido de humedad de los ingredientes 22-27%, temperatura del cilindro 100-140 ºC, y velocidad del tornillo entre 100-180 rpm, que son las variables independientes estadísticamente significativas, sobre las propiedades físicas de los extruidos. La cocción por extrusión aumenta la digestibilidad de las proteínas de origen vegetal, debido a la desnaturalización de la proteína y la inactivación de los inhibidores enzimáticos. Entre los indicadores claves de la calidad física de los alimentos extruidos, durante la manipulación, almacenaje y la alimentación, se reportan: estabilidad en agua, índice de durabilidad de los pellets, índice de solubilidad en agua, índice de absorción de agua, densidad aparente, tiempo de hidratación y velocidad de hundimiento.

Biografía del autor/a

Alberto Ricardo Albis Arrieta, Universidad del Atlántico

Profesor Asociado

Citas

Future Market Insights Global and Consulting Pvt.Ltd, «Future Market Insights,» Future Market Insights, Inc. Christiana Corporate, 200 Continental Drive, Suite 401, Newark, Delaware - 19713, United States, 05 02 2023. [En línea]. Available: https://www.futuremarketinsights.com/reports/shrimp-market. [Último acceso: 28 02 2023].

Market Report Historical and Forecast Market Analysis, «EMRS,» Export Market Research, [En línea]. Available: https://www.expertmarketresearch.com/reports/shrimp-market. [Último acceso: 28 02 2023].

Information and analysis on markets and trade of fisheries and aquaculture products, «FAO,» Globefish, 20 02 2023. [En línea]. Available: https://www.fao.org/in-action/globefish/news-events/trade-and-market-news/q1-2023-jan-mar/en/?a=889. [Último acceso: 28 02 2023].

Global Shrimp Industry Reports, «Mordor Intelligence,» The Global Shrimp research report , [En línea]. Available: https://www.mordorintelligence.com/industry-reports/shrimp-market. [Último acceso: 28 02 2023].

Research and Markets, «researchandmarkets,» Global Shrimp Market by Production, Export, Import, Consumption, Countries, Species, Product Form, Size, Value Chain Analysis & Forecast, Abril 2021. [En línea]. Available: https://www.researchandmarkets.com/reports/5317039/. [Último acceso: 12 Abril 2023].

B. Devresse, «Producción de Alimentos Para Camarones Estables en el Agua,» de Avances en Nutrición Acuicola IV Memorias y IV Simposium Internacional de Nutrición Acuicola, La Paz, B.C.S., México, 2000.

A. J. Nunes, L. lotte, G. Leonardi y L. Burri, «Developing sustainable, cost-effective and high-performance shrimp feed,» Aquaculture Reports, vol. 27, nº 101422, pp. 1-12, 2022.

FAO, «The State of World Fisheries and Aquaculture 2020. Sustainability in action.,» Rome, 2020.

O. &. O. R. &. W. M. &. B. B. &. S. F. &. Z. C. Tyapkova, «Replacing fishmeal with oilseed cakes in fish feed – A study on the influence of processing parameters on the extrusion behavior and quality properties of the feed pellets,» Journal of Food Engineering, vol. 191, pp. 28-36, 2016.

A. &. P.-P. J. T. &. G. G. &. A.-P. M. &. V. m. S. &. P.-F. A. &. A.-F. J. Barreto, «Fishmeal replacers by alternative sources for shrimp feed: General aspects.,» Journal of Agriculture and Veterinary Science, vol. 13, pp. 6-9, 2020.

C. Tantikitti, «Feed palatability and the alternative protein sources in shrimp feed.,» Songklanakarin Journal of Science and Technology, vol. 36, pp. 51-55, 2014.

SØRENSEN, «A review of the effects of ingredient composition and processing conditions on the physical qualities of extruded hight-energy, fish feed as extruded by prevaling methods,» Aquaculture Nutrition, vol. 18, nº 3, pp. 233-248, 2012.

B. D. Glencross, «A feed is still only as good as its ingredients: An update on the nutritional research strategies for the optimal evaluation of ingredients for aquaculture feeds,» Aquaculture Nutrition, vol. 26, nº 6, pp. 1871-1883, 2020.

C. &. L. K.-J. Lee, «Dietary protein requirement of Pacific white shrimp Litopenaeus vannamei in three different growth stages,» Fisheries and Aquatic Science, vol. 21, pp. 21-30, 2018.

M. M. &. A. A. M. Albert G. J. Tacon, «Future Feeds: Suggested Guidelines for Sustainable Development,» Reviews in Fisheries Science & Aquaculture, pp. 1-8, 2021.

W. G. D. &. G. H. Leonard G. Obaldo, «Extrusion Processing and Its Effect on Aquaculture Diet Quality and Shrimp Growth,» Journal of Applied Aquaculture, vol. 10, nº 2, pp. 41-53, 2000.

G. &. A. R. Baskar, «Role of extrusion technology in food processing and its effect on nutritional values,» International Journal of Modern Science and Technology, vol. 1, nº 1, pp. 1-4, 2016.

F. &. S. D. &. H. R. Barrows, «The effects of extrusion condition on the nutritional value of soybean meal for rainbow trout (Oncorhynchus mykiss),» Aquaculture, vol. 265, pp. 244-252, 2007.

N. &. R. K. &. M. K. Chevanan, «Effects of Processing Conditions on Single Screw Extrusion of Feed Ingredients Containing DDGS,» Food Bioprocess Technology, nº 3, pp. 111-120, 2010.

V. &. K. V. &. F. K. Offiah, «Extrusion Processing of Raw Food Materials and by-products: A Review,» Critical Reviews in Food Science and Nutrition, vol. 59, nº 18, pp. 2979-2998, 2018.

L. A. C. F. O. L. Velasco M, «Dietary Protein Requirement for Litopenaeu vannamei,» de Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola. 19-22, México, 2000.

M. Perez-Velazquez, M. L. González-Félix, F. Jaimes-Bustamente, L. R. Martínez-Córdova, D. A. Trujillo-Villalba y D. A. Davis, «Investigation of the Effects of Salinity and Dietary Protein Level on Growth and Survival of Pacific White Shrimp, Litopenaeus vannamei,» JOURNAL OF THE WORLD AQUACULTURE SOCIETY, vol. 38, nº 4, pp. 475-485, 2007.

A. Jatobá, B. C. da Silva, J. S. da Silva, F. d. N. Vieira, J. L. P. Mouriño, W. Q. Seiffert y T. M. Toledo, «Protein levels for Litopenaeus vannamei in semi-intensive and biofloc systems. Aquaculture,,» Aquaculture, vol. 432, pp. 365-371, 2014.

I.-K. Jang, E. Shahkar, S. kyoung Kim, H. Yun, K. Katya, G. Park y S. C. Bai, «Evaluation of optimum dietary protein level for juvenile whiteleg shrimp (Litopenaeus vannamei),» Journal of Crustacean Biology, vol. 34, nº 5, pp. 552-558, 2014.

H. Yun, E. Shahkar, K. Katya, I.-K. Jang, S. k. Kim y S. C. Bai, «Effects of bioflocs on dietary protein requirement in juvenile whiteleg Shrimp, Litopenaeus vannamei,» Aquaculture Research, pp. 1-12, 2015.

G. Ma, L. Sui y Y. Deng, «Effect of dietary protein level and salinity on growth, survival, enzymatic activities and amino-acid composition of the white shrimp Litopenaeus vannamei (Boone, 1931) juveniles,» Crustaceana, vol. 88, nº 1, pp. 82-95, 2015.

E. Bortone, «Interacción de ingredientes y procesos en la producción de alimentos hidroestables para camarones,» de Memorias VI Simposium Internacional de Nutrición Acuicola, Cancún, Quintana Roo, México, 2002.

O. &. A. S. &. B. K. Kaddour, «FACTORS INFLUENCING THE QUALITY OF EXTRUDED SINKING AQUATIC FEED PELLETS,» PROCESS ENGINEERING, vol. 27, pp. 1953-1982, 2010.

V. &. G. A. &. B. R. &. J. J. Draganovic, «Assessment of the effects of fish meal, wheat gluten, soy protein concentrate and feed moisture on extruder system parameters and the technical quality of fish feed,» Animal Feed Acience and Technology, vol. 165, nº 250, pp. 238-250, 2011.

F. T. B. Ronald W. Hardy, Cap. 9- Diet Formulation and Manufacture, John E. Halver, Ronald W. Hardy, Fish Nutrition (Third Edition), Academic Press, pages 505-600, 2003.

M. &. R. P. &. V. A. &. B. F. Sánchez-Muros, «Innovative protein sources in shrimp (Litopenaeus vannamei) feeding,» Reviews in Aquaculture, vol. 12, pp. 186-203, 2018.

T. Watanabe, «Strategies for further development of aquatic feeds,» Fisheries Science, vol. 68, pp. 242-252, 2002.

J. &. R. J. Teves, «The quest for indigenous aquafeed ingredients: A review.,» Reviews in Aquaculture, vol. 6, pp. 1-18, 2014.

H. &. D. D. Galkanda-Arachchige, «Evaluation of differently processed soybean meal products as ingredients in practical diets for Pacific white shrimp Litopenaeus vannamei.,» Aquaculture Nutrition, vol. 26, pp. 287-295, 2019.

M. &. H.-L. A. &. A.-S. S. &. R.-G. H. García-Ulloa G., «Substituting fishmeal with mixtures of wheat, corn and soya bean meals in diets for the white leg shrimp, Litopenaeus vannamei (Boone): effect on production parameters and preliminary economic assessment.,» Aquaculture Research, vol. 48, pp. 1-10, 2017.

R. &. P. S. &. D. R. &. D. D. Soares, «Feeding behavior and growth of Litopenaeus vannamei fed soybean-based diets with added feeding effectors,» Aquaculture, vol. 536, pp. 736-487, 2021.

A. L. L. S. B. C. K. E. J. R. J. B. A. F. R. M. M. L. P. S. A. W. Yuan Yuan, «Feed intake as an estimation of attractability in Pacific white shrimp Litopenaeus vannamei,» Aquaculture, vol. 532, nº 736041, pp. 1-21, 2021.

J. M. C. A. C. K. C. D. R. J. A. M. C. P. M. J. V. C. Z. K. Z. J. M. S. Katheline Hua, «The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets,» One Earth, vol. 1, nº 3, pp. 316-329, 2019.

A. G. Tacon y M. Metian, «Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects,» Aquaculture, vol. 285, pp. 146-158, 2008.

M. &. K. S. Dawood, «Application of fermentation strategy in aquafeed for sustainable aquaculture,» Reviews in Aquaculture, vol. 12, pp. 987-1002, 2020.

S. &. W. A. &. H. F. &. W. R. &. D. S. Woodgate, «The utilisation of European processed animal proteins as safe, sustainable and circular ingredients for global aquafeeds,» Reviews in Aquaculture, pp. 1-25, 2022.

C. &. h. x. &. A. A. &. G. A. &. K. B. Larbi Ayisi, «Recent Studies Toward the Development of Practical Diets for Shrimp and Their Nutritional Requirements,» Hayati Journal of Bioscences, vol. 24, pp. 1-9, 2017.

European Food Safetty Authority, «Efsa,» European Food Safety Authority, [En línea]. Available: https://www.efsa.europa.eu/en/topics/animal-by-products. [Último acceso: 04 03 2023].

J. G.-C. F. Córdova-Murueta, «Nutritive value of squid and hydrolyzed protein supplement in shrimp feed,» Aquaculture, vol. 210, pp. 371-384, 2002.

C. O.-N. M. S. D. H. R. G.-R. B. Hernández, «Enhancement of shrimp Litopenaeus vannamei diets based on terrestrial protein sources via the inclusion of tuna by-product protein hydrolysates,» Aquaculture, vol. 317, pp. 117-123, 2011.

C. P. L. B. D. L. V. S. A. B. W. Sary, «Tilapia by-product hydrolysate powder in diets for Nile tilapia larvae,» Acta Scientiarum: Animal Sciences , vol. 39, pp. 1-6, 2017.

M. &. R. P. &. C. N. &. R. J. &. A. M. M. &. A. T. &. F. D. &. N. F. Soares, «Protein hydrolysates from poultry by-product and swine liver as an alternative dietary protein source for the Pacific white shrimp,» Aquaculture Reports, vol. 17, 2020.

S. S. N. A. F. H. A. M.-G. H. Saadi, «Recent advances in food biopeptides: production, biological functionalities and therapeutic applications,» Biotechnology, vol. 33, pp. 80-116, 2015.

Y. W. Z. D. Z. W. G. W. G. Hou, «Protein hydrolysates in animal nutrition: industrial production, bioactive peptides, and functional significance,» Journal Animal Acience Biotechnology, vol. 8, pp. 1-13, 2017.

A. &. v. r. V. &. B. M. &. B. S. &. D. D. Ghaly, «Fish Processing Wastes as a Potential Source of Proteins, Amino Acids and Oils: A Critical Review.,» Journal of Microbial & Biochemical Technology, vol. 5, nº 4, pp. 107-129, 2013.

D. T. Mach y R. Nortvedt, «Chemical and nutritional quality of silage made from raw or cooked lizard fish (Saurida undosquamis) and blue crab (Portunus pelagicus),» Society of Chemical Industry, vol. 89, nº 15, pp. 2519-2526, 2009.

P. &. G. G. &. S. S. &. T. J. &. P. M. &. R. C. &. C. G. &. E. L. &. S. A. Gallardo, «Nutritive value of diets containing fish silage for juvenile Litopenaeus vannamei (Bonne, 1931).,» Journal of the science of food and agriculture, vol. 92, nº 11, pp. 2320-2325, 2012.

A. Ricci, A. Allende, D. Bolton, M. Chemaly, R. Davies, L. Herman, K. Koutsoumanis, R. Lindqvist, B. Nørrung, L. Robertson, G. Ru, M. Sanaa, M. Simmons, P. Skandamis y Snary, «Evaluation of the application for a new alternative processing method for animal by-products of Category 3 material (ChainCraft B.V.),» EFSA Journal, vol. 16, nº 6, pp. 1-23, 2018.

Y. Dersjant-Li, «The use of soy protein in aquafeeds,» Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola. 3 al 6 de Septiembre del 2002, Cancún. Quintana Roo, México, 2002.

D. M. G. III, F. T. Barrows, P. Brown, K. Dabrowski, T. G. Gaylord, R. W. Hardy, E. Herman, G. Hu, Å. Krogdahl, R. Nelson, K. Overturf, M. Rust, W. Sealey, D. Skonberg, E. J. Souza y D. Stone, «Expanding the utilization of sustainable plant products in aquafeeds: a review,» Aquaculture Research, vol. 38, nº 6, pp. 551-579, 2007.

C. a. D. Allen Davis, «Replacement of fish meal in practical diets for the Pacific white shrimp, Litopenaeus vannamei,» Aquaculture, vol. 185, nº (3-4), pp. 291-298, 2000.

S. L. T. V. M. K. M. R. M. P. Amrutha Gopan, «Anti-Nutritional Factors in Plant-Based Aquafeed Ingredients: Effects on Fish and Amelioration Strategies,» Bioscience Biotechnology Research Communication, vol. 13, nº 12, pp. 1-9, 2020.

P. &. M. A. &. S. N. &. L. S. Chakraborty, «A review on alternative plant protein sources available for future sustainable aqua feed production,» International Journal of Chemical Studies, vol. 7, nº 3, pp. 1399 -1404, 2019.

E. &. D. D. &. R. D. Amaya, «Alternative diets for the Pacific white shrimp Litopenaeus vannamei,» Aquaculture, vol. 262, pp. 419-425, 2007.

D. D. D. a. S. D. d. S. F. Sookying, «A review of the development and application of soybean-based diets for Pacific white shrimp Litopenaeus vannamei,» Aquaculture Nutrition, nº 19, pp. 441-448, 2013.

H. &. L. D. &. R. T. &. N. A. Sabry-Neto, «Effects of soy protein ratio, lipid content and minimum level of krill meal in plant-based diets over the growth and digestibility of the white shrimp, Litopenaeus vannamei.,» Aquaculture Nutrition, vol. 23, nº 2, pp. 293-303, 2016.

H.-M. H.-T. S. L. M. C. A. R. T. H. T. K. Richard Hulefeld, «Nutritional evaluation of an improved soybean meal as a fishmeal replacer in the diet of Pacific white shrimp, Litopenaeus vannamei,» Aquaculture Research, vol. 49, 2018.

W. B. G. Z. C. Y. Y. S. H. L. J. L. C. Z. a. X. S. Zhao, «Effect of extrusion variables on the extrudate characteristics of fish muscle. soy protein blend and the optimization of these variables,» Journal of Environmental Biology, nº 40, pp. 409-417, 2019.

Q. &. T. B. &. D. X. &. C. S. &. L. H. Yang, «Effect of replacing fish meal with extruded soybean meal on growth, feed utilization and apparent nutrient digestibility of juvenile white shrimp (Litopenaeus vannamei,» Journal of Ocean University of China, vol. 14, nº 5, pp. 865-872, 2015.

F. &. F. P. &. R. K. &. M. K. (. Ayadi, «Modeling Single-Screw Extrution Processing Parameters and Resulting Extrudate Properties of DDGS-Based Nile Tilapia (Oreochromis niloticus) Feeds,» International Food Research Journal , pp. 1953-1982, 2013.

X. &. D. D. Qiu, «Use of Porcine Meal in Plant-based Practical Diets for Pacific White Shrimp, Litopenaeus vannamei: PORCINE MEAL IN SHRIMP FEEDS.,» Journal of the World Aquaculture Society, vol. 49, 2017.

D. J. V.-R. N. C. F. D. R.-J. Delgado Efren, «Evaluation of fish oil content and cottonseed meal with ultralow gossypol content on the functional properties of an extruded shrimp feed,» Aquaculture Reports, vol. 19, 2021.

D. C. F. F. N. A.-G. I. S.-S. A. M.-. R. H. C. F. D. Reyes-J´aquez, «The effect of glandless cottonseed meal content and process parameters on the functional properties of snacks during extrusion cooking,» Food Nutrition Science, vol. 3, nº 12, pp. 1716-1725, 2012.

P. G. G. D. P. E. C. M. Robinson, «Influence of variety and storage for up to 22 days on nutrient composition and gossypol level of Pima cottonseed (Gossypium spp.),» Animal Feed Science Technology, vol. 91, pp. 149-156, 2001.

C. F. F. N. C. P. D. L. E. S. S. S. A. G. I. C. C. F. M. R. H. Reyes Jáquez D, «Effect of glandless cottonseed meal content on the microstructure of extruded corn-based snacks,» Advances in Food Sciences, vol. 36, nº 3, pp. 125-130, 2014.

B. &. H. D. &. S. J. Glencross, «The Application of Single-Cell Ingredients in Aquaculture Feeds—A Review,» Review Fishes, vol. 5, nº 22, pp. 1-39, 2020.

J. a. M. r.-R. J. Gamboa-Delgado, «Potential of microbial derived nutrients for aquaculture development.,» Reviews In Aquaculture, vol. 10, pp. 224-246, 2018.

J. Delamare-Deboutteville, D. J. Batstone, M. Kawasaki, S. Stegman, M. Salini, S. Tabrett, R. Smullen, A. C. Barnes y T. Hülsen, «Mixed culture purple phototrophic bacteria is an effective fishmeal replacement in aquaculture,» Water Research X, vol. 4, nº 100031, pp. 1-11, 2019.

W. K. B. v. L. M. F. M. v. D. D. S. K. v. d. H. P. e. a. Malcorps, «The Sustainability Conundrum of Fishmeal Substitution by Plant Ingredients in Shrimp Feeds,» Sustainability, vol. 11, nº 4, p. 1212, 2019.

S. &. S. K. &. W. L. &. L. K. &. W. R. &. Z. C. Hu, «Replacement of fish meal with defatted silkworm (Bombyx mori L.) pupae meal in diets for Pacific white shrimp (Litopenaeus vannamei).,» Aquaculture, vol. 510, pp. 150-159, 2019.

S. W. Jones, A. Karpol, S. Friedman, B. T. Maru y B. P. Tracy, «Recent advances in single cell protein use as a feed ingredient in aquaculture,» Current Opinion in Biotechnology, vol. 61, pp. 189-197, 2020.

R. &. P. A. Gelabert, «Selectivity of particle size by the shrimp Litopenaeus vannamei (Boone, 1931) larvae,» Aquaculture Nutrition, vol. 17, pp. 244-247, 2011.

S. K. Singh, «Understanding the Effect of Extrusion Processing Parameters on Physical, Nutritional and Rheological Properties of Soy White Flakes Bases Aquafeed in a Single Screw Extruder,» de Electronic Theses and Dissertations. 956., South Dakota State University, 2016.

W. G. D. J. H. T. J. J. C. &. K. C. B. Leonard G. Obaldo, «The Impact of Ingredient Particle Size on Shrimp Feed,» Journal of Applied Aquaculture, vol. 8, nº 4, pp. 55-67, 1999.

L. G. O. &. A. G. J. Tacon, «Manufacturing Different Diet Sizes and Its Effect on Pellet Water Stability and Growth of Three Size Classes of Pacific White Shrimp, Litopenaeus vannamei,» Journal of Applied Aquaculture, vol. 11, nº 4, pp. 57-66, 2001.

M. Aaqillah-Amr, A. Hidir, M. Azra, A. Ahmad-Ideris, M. Abualreesh, M. Noordiyana y M. Ikhwanuddin, «Use of Pelleted Diets in Commercially Farmed Decapods during Juvenile Stages: A Review,» Animals, vol. 11, nº 1761, pp. 1-31, 2021.

O. Muñoz, «New technologies in extrusion process for shrimp feed,» de Avances en Nutrición Acuícola XI – Memorias del Décimo Primer Simposio Internacional de Nutrición Acuícola, 23- 25 de Noviembre,, Monterrey, Mexico Universida Autónoma de Nuevo León, 2011.

K. &. F. J. &. W. T. &. B. F. Liu, «Comparison of New and Conventional Processing Methods for Their Effects on Physical Properties of Fish Feed,» Animal Feeds Science and Technology, vol. 273, pp. 1-11, 2021.

Y.-S. M. Y.-H. T. S. C. Y.-L. Huang, «In vitro hypoglycemic, cholesterollowering and fermentation capacities of fiber-rich orange pomace as affected by extrusion,» International Journal of Biological Macromolecules, vol. 124, pp. 796-801, 2019.

N. &. K. M. H. &. G. R. Nikmaram, «The effects of extrusion cooking on antinutritional factors, chemical propertiesand contaminating microorganisms of food.,» International Journal of Farming and Allied Science, vol. 4, pp. 352-354, 2015.

E. &. R. J. D. Delgado, «Extruded Aquaculture Feed: A Review,» de Extrusion of Metals, Polymers and Food Products. IntechOpen, IntechOpen. , 2017.

F. G. A. M. K. S. M. E. c. o. p.-b. p. p. a. c. Mosibo OK, «Extrusion cooking of protein-based products: potentials and challenges,» Critical Reviews in Food Science and Nutrition, vol. 62, nº 9, pp. 2526-2547, 2020.

O. H. Romarheim, M. A. Aslaksen, T. Storebakken, Å. Krogdahl y A. Skrede, «Effect of extrusion on trypsin inhibitor activity and nutrient digestibility of diets based on fish meal, soybean meal and white flakes,» Archives of Animal Nutrition, vol. 59, nº 6, pp. 365-375, 2005.

S. &. G. S. &. W. L. Singh, «Nutritional aspects of Food extrusion,» International Journal of Food Science & Technology, vol. 42, pp. 916-929, 2007.

A. L. Gat Y, «Effect of extrusion process parameters and pregelatinized rice flour on physicochemical properties of ready-to-eat expanded snacks.,» J Food Sci Tecnnol, vol. 52, nº 5, pp. 2634-45, 2015.

F. M. C. F. A. A. H. E. S. N. D. &. F. K. Irungu, «Optimization of extruder cooking conditions for the manufacture of fish feeds using response surface methodology,» Journal of Food Process Engineering, pp. 1-12, 2018.

P. Y. L. W. W. C. C. H. Yuan G, «Effect of extrusion on physochemical prperties, functional properties and antioxidant activities of shrimp shell wastes protein,» International Journal of Biological Macromolecules, nº 136, pp. 1096-1105, 2019.

S. &. J. J. &. L. H. &. H. D. &. Z. X. &. Y. Y. &. X. S. Gao, «Effects of pelleted and extruded feed of different ingredients particle sizes on feed quality and growth performance of gibel carp (Carassius gibelio var. Cas V),» Aquacukture, nº 511, 2019.

K. O. S. S. K. L. J. A. J. F. &. F. T. B. T. L. Welker, «Effects of feed processing method (extrusion and expansion-compression pelleting) on water quality and growth of rainbow trout in a commercial setting,» Journal of Applied Aquaculture, vol. 30, nº 2, pp. 97-124, 2018.

N. R. B. J. B. Glencross, «Evaluating options for fishmeal replacement in diets for juvenile barramundi (Lates calcarifer).,» Aquaculture Nutrition, vol. 17, pp. e722-e732, 2011.

O. &. J. H. &. S. B. Kraugerud, «Physical properties of extruded fish feed with inclusion of different plant (legumes, oilseeds, or cereals) meals,» Fuel and Energy Abstracts, vol. 163, pp. 244-254, 2011.

T. &. K. O. &. S. M. &. S. T. &. H. M. &. C. R. &. Ø. M. Morken, «Effects of feed processing conditions and acid salts on nutrient digestibility and physical quality of soy‐based diets for Atlantic salmon (Salmo salar),» Aquaculture Nutrition, vol. 18, pp. 21-34, 2012.

S. &. S. P. &. M. K. Singh, «Modeling and optimizing the effect of extrusion processing parameters on nutritional properties of soy white fakes-based extrudates using response surface methodology,» Animal Feed Science and Technology, 2019.

G. B.-C. J. Z.-M. A. A.-M. A. Q.-R. R.R. Balandrán-Quintana, «Functional and nutritional properties of extruded whole pinto bean meal (Phaseolus Vulgaris L.),,» Journal Food Science, vol. 63, nº 1, pp. 113-116, 2010.

S. Bandyopadhyay y R. K. Rout, «Aquafeed Extrudate Flow Rate and Pellet Characteristics from Low-Cost Single-Screw Extruder,» Journal of Aquatic Food Product Technology, vol. 10, nº 2, pp. 1-15, 2001.

L. A. H. H. E. &. H. F. Rolfe, «Effects of particle size and processing variables on the properties of an extruded catfishfeed,» Journal of Aquatic Food Product Technology, vol. 10, nº 3, pp. 21-33, 2001.

N. Chevanan, K. Muthukumarappan y K. A. Rosentrater, «Extrusion Studies of Aquaculture Feed using Distillers Dried Grains with Solubles and Whey,» Food Bioprocess Technol, vol. 2, nº 2, pp. 177-185, 2009.

W. Z. P. Y. D. &. F. Z. Leonard, «Application of extrusion technology in plant food processing byproducts: An overview,» Comprehesive reviews in food science and food safety, vol. 19, nº 1, pp. 218-246, 2020.

M. Sørensen, G. Nguyen, T. Storebakken y M. Øverland, «Starch source, screw configuration and injection of steam into the barrel affect the physical quality of extruded fish feed,» Aquaculture Research, vol. 41, nº 3, pp. 419-432, 2010.

N. Chevanan, K. Muthukumarappan, K. A. Rosentrater y J. L. Julson, «Effect of Die Dimensions on Extrusion Processing Parameters and Properties of DDGS-Based Aquaculture Feeds.,» Cereal Chemistry, vol. 84, nº 4, pp. 389-398, 2007.

B. GLENCROSS, N. RUTHERFORD y W. HAWKINS, «A comparison of the growth performance of rainbow trout (Oncorhynchus mykiss) when fed soybean, narrow-leaf or yellow lupin meals in extruded diets,» Aquaculture Nutrition, vol. 17, nº 2, pp. 317-325, 2011.

S. M. J. X. e. a. Hao Wang, «Optimization of the process parameters for extruded commercial sinking fish feed with mixed plant protein source,» Journal of Food Process Engineering WILEY DOI: 10.1111/jfpe.13599, pp. 1-11, 2020.

S. D. &. A. G. T. Leonard G Obaldo, "Method for determining the physical stability of shrimp feeds in water," Aquaculture Research, vol. 33, pp. 369-377, 2002.

M. S. N. R. O. H. K. T. &. S. T. Sørensen, «Soybean meal improves the physical quality of extruded fish feed.,» Animal feed Science and Technology, vol. 149, nº 1-2, pp. 149-161, 2009.

M. K. Singh SK, «Effect of feed moisture, extrusion temperature and screw speed on properties of soy white flakes based aquafeed: a response surface analysis,» Journal Science Food Agriculture, vol. 96, nº 6, pp. 2220-2229, 2015.

R. V. D. Einde, A. V. D. Goot y R. Boom, «Understanding Molecular Weight Reduction of Starch During Heating-shearing Processes,» Journal Food Acience, vol. 68, nº 8, pp. 2396-2404, 2003.

S. K. Singh y K. Muthukumarappan, «Effect of Different Extrusion Processing Parameters on Physical Properties of Soy White Flakes and High Protein Distillers Dried Grains-Based Extruded Aquafeeds,» Journal of Food Research, vol. 3, nº 6, pp. 107-123, 2014.

S. &. M. K. &. R. K. Kannadhason, «Effects of Ingredients and Extrusion Parameters on Aquafeeds Containing DDGS and Tapioca Starch.,» Journal of Aquaculture Feed Science and Nutrition, vol. 1, nº 1, pp. 6-21, 2009.

O. O. T. O. A. P. Olaoye Saheed Abiola, «Optimization of Some Physical and Functional Properties of Extruded Soybean Crud Residue-base Floating Fish Feed,» Journal of Food and Nutrition Sciences, vol. 9, nº 6, pp. 163-177, 2021.

N. Oikonomou y M. Krokida, «Water Absorption Index and Water Solubility Index Prediction for Extruded Food Products,» Internatiuonal Journal of Food Properties, vol. 15, nº 1, pp. 157-168, 2012.

L. L. C. A. T. J.-P. P. C. A. V. D. A. R. F. S. P. E. Asma Chaabani, «Optimization of vacuum coating conditions to improve oil retention in Trout feed,» Aquaculture Engineering, vol. 91, nº 102127, pp. 1-14, 2020.

J. &. L. F. &. B. W. &. C. L. &. L. W. &. T. S. Xiang, «A Literature Review on Maillard Reaction Based on Milk Proteins and Carbohydrates in Food and Pharmaceutical Products: Advantages, Disadvantages, and Avoidance Strategies. Foods.,» Foods, vol. 10, nº 1998, pp. 1-18, 2021.

H. Jaeger, A. Janositz y D. Knorr, «The Maillard reaction and its control during food processing. The potential of emerging technologies,» Pathologie Biologie, vol. 58, nº 3, pp. 207-213, 2010.

O. Tavano, «Protein hydrolysis using proteases: An important tool for food biotechnology.,» Journal of Molecular Catalysis B: Enzymatic, vol. 90, pp. 1-11, 2013.

D. SMITH, S. TABRETT, M. BARCLAY y S. IRVIN, «The efficacy of ingredients included in shrimp feeds to stimulate intake,» Aquaculture Nutrition, vol. 11, nº 4, pp. 263-272, 2005.

L. A. Roy, A. Bordinhon, D. Sookying, D. A. Davis, T. W. Brown y G. N. Whitis, «Demonstration of alternative feeds for the Pacific white shrimp, Litopenaeus vannamei , reared in low salinity waters of west Alabama,» Aquaculture research, vol. 40, nº 4, pp. 496-503, 2009.

D. Sookying y D. A. Davis, «Pond production of Pacific white shrimp (Litopenaeus vannamei) fed high levels of soybean meal in various combinations.,» Aquaculture, vol. 319, pp. 141-149, 2011.

D. Sookying y D. A. Davis, «Use of soy protein concentrate in practical diets for Pacific white shrimp (Litopenaeus vannamei) reared under field conditions,» Aquaculture International, vol. 20, nº 2, pp. 357-371, 2012.

Y.-G. Zhou, D. Davis y A. Buentello, «Use of new soybean varieties in practical diets for the Pacific white shrimp, Litopenaeus vannamei,» Aquaculture Nutrition, vol. 21, pp. 635-643, 2014.

J. Guo, Y. Huang, G. Salze, L. A. Roy y D. A. Davis, «Use of plant-based protein concentrates as replacement for fishmeal in practical diets for the Pacific white shrimp (Litopenaeus vannamei ) reared under high stocking density and low salinity conditions,» Aquaculture Nutrition, vol. 26, pp. 225-232, 2019.

H. S. C. Galkanda Arachchige, X. Qiu, H. H. Stein y A. Davis, «Evaluation of soybean meal from different sources as an ingredient in practical diets for Pacific white shrimp Litopenaeus vannamei,» Aquaculture Research, vol. 50, pp. 1230-1247, 2019.

D. Sookying, F. S. D. Silva, D. A. Davis y T. R. Hanson, «Effects of stocking density on the performance of Pacific white shrimp Litopenaeus vannamei cultured under pond and outdoor tank conditions using a high soybean meal diet,» Aquaculture, vol. 319, nº 1-2, pp. 232-239, 2011.

J. Reis, R. Novriadi, A. Swanepoel, J. Guo, M. Rhodes y D. A. Davis, «Optimizing feed automation: improving timer-feeders and on demand systems in semi-intensive pond culture of shrimp Litopenaeus vannamei,» Aquaculture, vol. 519, pp. 734-759, 2019.

C. &. A. Figueiredo-Silva, «Review of Amino Acid Nutrition and Digestibility in Shrimp: A Step Forward Toward the Formulation of Cost-Effective Feeds,» de Avances en Nutrición Acuícola, Nuevo León, Mexico, 2015.

A. G. Tacon, «Biosecure Shrimp Feeds and Feeding Practices: Guidelines for Future Developmen,» Journal of the Word Aquaculture Society, vol. 48, nº 3, pp. 381-392, 2017.

Descargas

Publicado

2024-08-29