Efecto de la Modificación del Soporte con Níquel y la Promoción con Cobre en la Reacción Competitiva de Hidrosulfuración de Dibenzotiofeno E Hidrodesnitrogenación de Carbazol Utilizando Catalizadores Cumo-Ni/Γ-Al2o3

Autores/as

  • Ana Montaño
  • Felix Navarro
  • Esneyder puello polo UNIVERSIDAD DEL ATLANTICO

DOI:

https://doi.org/10.15665/rp.v21i2.3095

Resumen

Se evaluó el efecto de modificación del soporte con níquel y la promoción con cobre en la reacción competitiva de hidrodesulfuración de DBT e hidrodesnitrogenación de carbazol utilizando catalizadores CuNiMo/γ-Al2O3. Los catalizadores se caracterizaron FRX, área específica BET, FT-IR y determinación de sitios ácidos. El análisis FRX mostró coincidencias entre los valores nominales y experimentales con relaciones Mo/Cu= 6 y Cu/(Cu+Ni)= 0.65. Las áreas específicas estuvieron dentro del intervalo 152-207 m2/g con una distribución de diámetro de poro entre 5.3-5.5 nm. FT-IR exhibió bandas características de enlaces Mo-O terminales y tipo puente características de la estructura tipo Anderson y vibraciones pertenecientes a enlaces Cu-O. Los catalizadores y soporte, presentaron acidez débil y muy débil, respectivamente. La evaluación catalítica mostró un comportamiento de pseudo-primer orden basado en la ecuación de Langmuir-Hinshelwood, y los productos de conversión de la HDN de carbazol fueron por debajo del 4%, es decir, tuvo alta conversión hacia la HDS a pesar de tal efecto.

Citas

Bentley, R. W., Mannan, S. A., & Wheeler, S. J. (2007). Assessing the date of the global oil peak: the need to use 2P reserves. Energy policy, 35(12), 6364-6382.

Liu, Y., Lu, S., Yan, X., Gao, S., Cui, X., & Cui, Z. (2020). Life cycle assessment of petroleum refining process: A case study in China. Journal of Cleaner Production, 256, 120422.

Buitrago Pineda, F. A., Quevedo Caviedes, O. L., & Torres García, F. A. (2012). Prefactibilidad centro de investigación del crudo pesado CICP (Bachelor's thesis, Universidad Ean).

Del Rio Amador, E., & Barbosa López, A. L. D. (2014). Síntesis y actividad de catalizadores basados en molibdato ferroso soportados en tio2 y carbón activo para remoción de azufre refractario en petróleo crudo (Doctoral dissertation, Universidad de Cartagena).

Chorkendorff, I., & Niemantsvedriet, J. W. (2003). Concepts of Modern Catalysis and Kinetics; WILEYVCH GmbH & Co

Zhang, L., Long, X., Li, D., & Gao, X. (2011). Study on high-performance unsupported Ni–Mo–W hydrotreating catalyst. Catalysis Communications, 12(11), 927-931.

Ferdous, D., Bakhshi, N. N., Dalai, A. K., & Adjaye, J. (2007). Synthesis, characterization and performance of NiMo catalysts supported on titania modified alumina for the hydroprocessing of different gas oils derived from Athabasca bitumen. Applied Catalysis B: Environmental, 72(1-2), 118-128.

De Castro, R. G., Devers, E., Digne, M., Lamic-Humblot, A. F., Pirngruber, G. D., & Carrier, X. (2021). Surface-dependent activity of model CoMoS hydrotreating catalysts. Journal of Catalysis, 403, 16-31.

Oliviero, L., Maugé, F., Afanasiev, P., Pedraza-Parra, C., & Geantet, C. (2021). Organic additives for hydrotreating catalysts: a review of main families and action mechanisms. Catalysis Today, 377, 3-16.

Zhao, Y. F., Yang, Y., Mims, C., Peden, C. H., Li, J., & Mei, D. (2011). Insight into methanol synthesis from CO2 hydrogenation on Cu (1 1 1): complex reaction network and the effects of H2O. Journal of catalysis, 281(2), 199-211.

Tao, X., Wang, G., Huang, L., Li, X., & Ye, Q. (2016). Effect of Cu–Mo Activities on the Ni–Cu–Mo/Al 2 O 3 Catalyst for CO 2 Reforming of Methane. Catalysis Letters, 146(10), 2129-2138.

Liu, H., Yin, C., Li, H., Liu, B., Li, X., Chai, Y., & Liu, C. (2014). Synthesis, characterization and hydrodesulfurization properties of nickel–copper–molybdenum catalysts for the production of ultra-low sulfur diesel. Fuel, 129, 138-146.

Jiménez, M. H. G. (2013). Catalizadores de NiMo soportados en alúmina bimodal para hidrodesulfuración de naftas de coquización.

Zhao, Y. F., Yang, Y., Mims, C., Peden, C. H., Li, J., & Mei, D. (2011). Insight into methanol synthesis from CO2 hydrogenation on Cu (1 1 1): complex reaction network and the effects of H2O. Journal of Catalysis, 281(2), 199-211.

Babich, I. V., & Moulijn, J. A. (2003). Science and technology of novel processes for deep desulfurization of oil refinery streams: a review☆. Fuel, 82(6), 607-631.

Topsøe, H. (2007). The role of Co–Mo–S type structures in hydrotreating catalysts. Applied Catalysis A: General, 322, 3-8.

Tao, X., Wang, G., Huang, L., Li, X., & Ye, Q. Effect of Cu–Mo Activities on the Ni– Cu–Mo/Al2O3 Catalyst for CO2 Reforming of Methane. Catalysis Letters, 146(10), (2016), 2129-2138.

Naderi, M. (2015). Surface Area: Brunauer–Emmett–Teller (BET). In Progress in filtration and separation (pp. 585-608). Academic Press.

Dudek, L. (2016). Pore size distribution in shale gas deposits based on adsorption isotherm analyses. Nafta-Gaz, 72(8), 603-609.

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Re-port). Pure and Applied Chemistry, 87(9-10), 1051-1069.

Rouquerol, J., Rodríguez-Reinoso, F., Sing, K. S. W., & Unger, K. K. (1994). Correlation of single and prediction of multicomponent adsorption equilibria at high pore filling degrees. Characterization of Porous Solids III, 87, 99.

Leofanti, G., Padovan, M., Tozzola, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41(1-3), 207-219.

Kaneko, K. (1994). Determination of pore size and pore size distribution: 1. Adsor-bents and catalysts. Journal of membrane science, 96(1-2), 59-89.

Polo, E. P., Baños, M. R., & Fals, J. F. (2018). Catalizadores catalíticos de po-lioxometalatos tipo Anderson-Evans de FeMo, CoMo y NiMo soportados sobre zeolita β para la hidrodesulfuración de tiofeno. Prospectiva, 16(1), 34-40.

Yadav, A. K., & Bhattacharyya, S. (2020). A new approach for the fabrication of porous alumina beads using acid leachate of kaolin. Microporous and Mesopo-rous Materials, 293, 109795.

Yang, W., Li, C., Tian, S., Liu, L., & Liao, Q. (2020). Influence of synthesis varia-bles of a sol-gel process on the properties of mesoporous alumina and their fluo-ride adsorption. Materials Chemistry and Physics, 242, 122499.

Orlega-Zarzosa, G., Martinez, J. R., Dominguez-Espinos, O., & Ruiz, F. (2001). Incorporación de nanopartículas de especies de cobre en una matriz de sílica xe-rogel. INVESTIGACiÓN, 47(1), 70-75.

Ogale, S. B., Bilurkar, P. G., Mate, N., Kanetkar, S. M., Parikh, N., & Patnaik, B. (1992). Deposition of copper oxide thin films on different substrates by pulsed ex-cimer laser ablation. Journal of applied physics, 72(8), 3765-3769.

Benhmid, A., Edbey, K., Bukhzam, A., Alhowari, H., Mekhemer, G. A. H., & Zaki, M. I. (2018). Surface Acidity of the Supported Molybdenum oxide Catalysts Probed by Potentiometric Titration of n-butylamine. International Research Journal of Pure and Applied Chemistry, 1-7.

Cid, R., & Pecchi, G. (1985). Potentiometric method for determining the number and relative strength of acid sites in colored catalysts. Applied catalysis, 14(1-3), 15-21.

Alamilla, R. G., & Andrade, S. R. (2016). Determinación de Acidez Superficial en Materiales Sólidos Mediante Titulación Potenciométrica con n-Butilamina Deter-mination of superficial acidity in solid materials by potenciometric titration with n-Butylamine. Naturaleza y Tecnología, (10).

Cabello, C. I., Botto, I. L., & Thomas, H. J. (2000). Anderson type heteropolyoxomo-lybdates in catalysis: 1. (NH4) 3 [CoMo6O24H6]· 7H2O/γ-Al2O3 as alternative of Co-Mo/γ-Al2O3 hydrotreating catalysts. Applied Catalysis A: General, 197(1), 79-86.

Grange, P., & Vanhaeren, X. (1997). Hydrotreating catalysts, an old story with new challenges. Catalysis today, 36(4), 375-391.

Descargas

Publicado

2023-08-15