Programación de Movimiento de un Robot Paralelo Delta Mediante un Sistema de Visión Artificial con Reconocimiento de Gestos Manuales

Autores/as

  • Eugenio Yime Universidad del Atlántico
  • Hansel Bonifacio
  • Javier Roldán

DOI:

https://doi.org/10.15665/rp.v21i1.2979

Palabras clave:

Robot Delta, comandos gesticulares, programación visual de robots, control por visión

Resumen

Este artículo presenta la implementación de un sistema de visión artificial en un robot Delta de uso académico, el cual logra comandar el robot en cada uno de sus seis movimientos posibles en el espacio cartesiano: derecha, izquierda, arriba, abajo, atrás y adelante. Para cada dirección de movimiento se asignó un comando gesticular, dando lugar a un lenguaje de seis gestos, todos realizados con la mano derecha. La detección de los gestos fue posible gracias al diseño de un software basado en las características geométricas de la mano. El código se desarrolló en el lenguaje Python, en conjunto con la librería OpenCV. La validez y efectividad en la detección de los gestos se demostró experimentalmente a través de pruebas donde se identificaron los mismos en diferentes condiciones de iluminación y con varias personas. Los resultados indican una alta efectividad en el reconocimiento de los gestos, logrando detectar todos y cada uno de ellos, con una confiabilidad superior al 96%. Además, el tiempo de detección de los gestos es corto, con un 90% de probabilidades de lograr la detección antes de los dos segundos. Si bien el software se desarrolló para utilizarse de forma conjunta con un robot paralelo tipo Delta; el mismo puede ser adaptado para interactuar con otros tipos de sistemas robóticos con tres grados de libertad traslacionales.

Citas

J. Merlet, Parallel Robots, 2nd ed. Springer, 2005.

R. Clavel, “Conception d’un robot parallele rapide a 4 degres de liberte,” Ph.D. dissertation, Ecole polytechnique federale de Lausanne EPFL, 1990.

R. Clavel, “Device for the movement and positioninng of an element in space,” Switzerland Patent 4.976.582, 1990.

C. Boer, T. Molinari, and L. Smith, Parallel Kinematic Machines, 1st ed. Springer, 1999.

S. Staicu, Dynamics of Parallel Robots, 1st ed. Springer, 2018.

S. Briot and W. Khalil, Dynamics of Parallel Robots: From Rigid Bodies to Flexible Elements, 1st ed. Springer, 2015.

W. Khalil and O. Ibrahim, “General solution for the dynamic modeling of parallel robots,” Journal of Intelligent and Robotic Systems, vol. 49, pp. 19–37, 2007.

H. D. Taghirad, Parallel Robots: Mechanics and Control, 1st ed. CRC Press, 2013.

D. Zhang, Parallel Robotic Machine Tools, 1st ed. Springer, 2010.

A. Codourey, “Dynamic modeling of parallel robots for computed torque control implementation,” The International Journal of Robotics Research, vol. 17, no. 12, pp. 1325–1336, 1998.

H. S. Kim, “Dynamics modeling and control of a delta high-speed parallel robot,” Journal of the Korean Society of Manufacturing Process Engineers, vol. 13, no. 5, pp. 90–97, 2014.

W. P. Feng, Z. L. Min, and Z. X. Man, “Dynamic modeling, simulation and experiment of the delta robot,” in Future Communication, Computing, Control and Management, ser. 141, Y. Zhang, Ed. Springer, 2012, vol. 1, pp. 149–156.

K. Miller and B. S. Stevens, “Modeling of dynamics and model-based control of delta direct-drive parallel robot,” Journal of robotics and mechatronics, vol. 7, no. 4, pp. 344–352, 1995.

M. Rachedi, “Model based control of 3 dof parallel delta robot using inverse dynamic model,” in 2017 IEEE International Conference on Mechatronics and Automation (ICMA), 2017, pp. 203–208.

P. Guglielmetti and R. Longchamp, “Task space control of the delta parallel robot,” IFAC Proceedings Volumes, vol. 25, no. 29, Part 1, pp. 337–342, 1992, IFAC Workshop on Motion Control for Intelligent Automation, Perugia, Italy, 27-29 October 1992.

F. C. Can, M. Hepeyiler, and O. Baser, “A novel inverse kinematic approach for delta parallel robot,” International Journal of Materials, Mechanics and Manufacturing, vol. 6, no. 5, pp. 321–326, 2018.

D. Rivas, E. Galarza, D. Turbaco, and W. Quimbita, “Delta robot controlled by robotic operating system,” ITECKNE, vol. 12, no. 1, pp. 54–59, 2015.

V. Damic, M. Cohodar, and A. Voloder, “Modelling and path planning of delta parallel robot in virtual environment,” in 29th DAAAM International Symposium on Intelligent Manufacturing and Automation, 2018, pp. 1726–9679.

Technical reference manual RAPID Instructions, Functions and Data types, ABB Robotics, 2010.

KUKA System Software 8.3, operating and Programming Instructions for End Users, KUKA Roboter GmbH, 2013.

EPSON RC+ 7.0 (Ver.7.5) SPEL+ Language Reference Rev.1, SEIKO EPSON CORPORATION, 2020.

K. Sekar, R. Thileeban, V. Rajkumar, and S. B. Sembian, “Hand gesture-controlled robot,” International Journal of Engineering Research & Technology, vol. 9, no. 11, pp. 17–19, 2020.

J. L. Raheja, G. A. Rajsekhar, and A. Chaudhary, “Controlling a remotely located robot using hand gestures in real time: A DSP implementation,” in 2016 5th International Conference on Wireless Networks and Embedded Systems (WECON), 2016, pp. 1–5.

A. A. M. Faudzi, M. H. K. Ali, M. A. Azman, and Z. H. Ismail, “Real-time hand gestures system for mobile robots control,” Procedia Engineering, vol. 41, pp. 798–804, 2012, international Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012).

T. Grzejszczak, M. Mikulski, T. Szkodny, and K. Jedrasiak, “Gesture based robot control,” in Computer Vision and Graphics, L. Bolc, R. Tadeusiewicz, L. J. Chmielewski, and K. Wojciechowski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 407–413.

A. D. Segal, M. C. Lesak, A. K. Silverman, and A. J. Petruska, “A gesture-controlled rehabilitation robot to improve engagement and quantify movement performance,” Sensors, vol. 20, no. 15, 2020. [Online]. Available: https://www.mdpi.com/1424-8220/20/15/4269

V. S. Rao and C. Mahanta, “Gesture based robot control,” in 2006 Fourth International Conference on Intelligent Sensing and Information Processing, 2006, pp. 145–148.

R. Castro and A. Manotas, “Diseño, construcción e implementación de un mecanismo paralelo tipo Delta con arquitectura de control abierta, para el uso como herramienta tecnológica en los procesos de enseñanza en la Robótica Educativa,” Tesis de Pregrado, Universidad del Atlántico, Barranquilla, Colombia, 2018.

B. Villa, V. Valencia, and J. Berrio, “Diseño de un sistema de reconocimiento de gestos no móviles mediante el procesamiento digital de imágenes,” Prospectiva, vol. 16, pp. 41–48, 2018.

D. García, “Reconocimiento de gestos de manos como mecanismo de interacción humano-robot,” Tesis de Maestría, Universidad Nacional de Colombia, Bogotá, Colombia, 2014.

J. Millán, “Reconocimiento gestual para interacción humano-robot basado en ROS,” Proyecto Final de Carrera, Departamento de Ingeniería de Sistemas y Automática. Escuela Técnica Superior de Ingeniería. Universidad de Sevilla, Sevilla, España, 2015.

E. León, “Reconocimiento de gestos del mano aplicado al desarrollo de una interfaz kinect para el museo regional de huajuapan,” Master’s thesis, Universidad Tecnológica de la Mixteca, Oaxaca, Mexico, 2015.

P. Lázaro, “Módulo de reconocimiento gestual para control de robot en tareas de asistencia,” Tesis de Pregrado, Departamento de Ingeniería de Sistemas y Automática, Universidad Carlos III, Leganés, Madrid, España, 2017.

J. Estefan, “Arquitectura de telecontrol de un robot mediante el uso de interfaces gestuales”, Tesis de Maestría, Universidad EAFIT, Medellín, Colombia, 2013

Descargas

Publicado

2023-07-31

Número

Sección

Articles