SÍNTESIS Y CARACTERIZACIÓN DE (NH4)4[NiMo6O24H6]•7H2O/V2O5/Al2O3–ZnO PARA LA DESULFURACIÓN OXIDATIVA DE MEZCLAS DE DIBENZOTIOFENO

Autores/as

  • Esneyder puello polo UNIVERSIDAD DEL ATLANTICO
  • Monica Rueda
  • Katty Castillo Cuello

DOI:

https://doi.org/10.15665/rp.v20i2.2944

Palabras clave:

Polioxomolibdatos, Desulfuración oxidativa, ɣ-Al2O3-ZnO, DBT.

Resumen

La síntesis de polioxomolibdatos tipo Anderson de NiMo soportados sobre V2O5/Al2O3 modificada con ZnO se evaluó en la desulfuración oxidativa de DBT. El catalizador se caracterizó por FRX, área específica B.E.T, FTIR, acidez superficial por titulación potenciométrica con n-Butilamina y SEM-EDS. El análisis FRX reveló que no hay cambios significativos entre las relaciones molares experimentales (Ni:Mo 1:7) y teóricas (Ni:Mo 1:6).  El área específica BET siguió el orden ɣ-Al2O3 (207m2/g) > ɣ-Al2O3-ZnO (185 m2/g) > VNiMo/ɣ-Al2O3-ZnO (74 m2/g) > VNiMo/ɣ-Al2O3 (56 m2/g). FTIR mostró bandas correspondientes a los enlaces Mo-O2 y N-H asignables a polioxomolibdatos. El catalizador VNiMo/ɣ-Al2O3 (57.7 µeq/m2) posee mayor densidad de sitios ácidos que el catalizador VNiMo/ɣ-Al2O3-ZnO (38.2 µeq/m2). SEM reveló textura laminar y morfología irregular, mientras que su análisis EDS indica la presencia de elementos que constituyen a los sólidos: V, Ni, Mo, Al, Zn.

Citas

L. Cedeño-Caero, E. Martínez-Abarca, M. Gómez-Díaz, y F. Pedraza-Archila, «OXIDESULFURIZATION OF ORGANOSULFUR COMPOUNDS CONTENT IN DIESEL. PART I. COPPER SUPPORTED CATALYSTS», rmiq, vol. 4, n.o 3, oct. 2020, Accedido: 5 de abril de 2022. [En línea]. Disponible en: http://www.rmiq.org/ojs311/index.php/rmiq/article/view/2114

L. Ding, Y. Zheng, Z. Zhang, Z. Ring, y J. Chen, «HDS, HDN, HDA, and hydrocracking of model compounds over Mo-Ni catalysts with various acidities», Applied Catalysis A: General, vol. 319, pp. 25-37, mar. 2007, doi: 10.1016/j.apcata.2006.11.016.

V. Chandra Srivastava, «An evaluation of desulfurization technologies for sulfur removal from liquid fuels», RSC Adv., vol. 2, n.o 3, pp. 759-783, 2012, doi: 10.1039/C1RA00309G.

C. Song, «An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel», Catalysis Today, vol. 86, n.o 1-4, pp. 211-263, nov. 2003, doi: 10.1016/S0920-5861(03)00412-7.

X. Zhou, J. Li, X. Wang, K. Jin, y W. Ma, «Oxidative desulfurization of dibenzothiophene based on molecular oxygen and iron phthalocyanine», Fuel Processing Technology, vol. 90, n.o 2, pp. 317-323, feb. 2009, doi: 10.1016/j.fuproc.2008.09.002.

L. Cedeño-Caero y M. A. Alvarez-Amparan, «Performance of molybdenum oxide in spent hydrodesulfurization catalysts applied on the oxidative desulfurization process of dibenzothiophene compounds», Reac Kinet Mech Cat, vol. 113, n.o 1, pp. 115-131, oct. 2014, doi: 10.1007/s11144-014-0729-8.

D. Wang, N. Liu, J. Zhang, X. Zhao, W. Zhang, y M. Zhang, «Oxidative desulfurization using ordered mesoporous silicas as catalysts», Journal of Molecular Catalysis A: Chemical, vol. 393, pp. 47-55, nov. 2014, doi: 10.1016/j.molcata.2014.05.026.

M. Chamack, A. R. Mahjoub, y H. Aghayan, «Catalytic performance of vanadium-substituted molybdophosphoric acid supported on zirconium modified mesoporous silica in oxidative desulfurization», Chemical Engineering Research and Design, vol. 94, pp. 565-572, feb. 2015, doi: 10.1016/j.cherd.2014.09.017.

E. Rafiee y F. Mirnezami, «Keggin-structured polyoxometalate-based ionic liquid salts: Thermoregulated catalysts for rapid oxidation of sulfur-based compounds using H2O2 and extractive oxidation desulfurization of sulfur-containing model oil», Journal of Molecular Liquids, vol. 199, pp. 156-161, nov. 2014, doi: 10.1016/j.molliq.2014.08.036.

M. A. Alvarez-Amparán y L. Cedeño-Caero, «MoOx-VOx based catalysts for the oxidative desulfurization of refractory compounds: Influence of MoOx-VOx interaction on the catalytic performance», Catalysis Today, vol. 282, pp. 133-139, mar. 2017, doi: 10.1016/j.cattod.2016.07.002.

M. L. Luna, M. A. Alvarez-Amparán, y L. Cedeño-Caero, «Performance of WOx–VOx based catalysts for ODS of dibenzothiophene compounds», Journal of the Taiwan Institute of Chemical Engineers, vol. 95, pp. 175-184, feb. 2019, doi: 10.1016/j.jtice.2018.06.010.

H. Gómez-Bernal, L. Cedeño-Caero, y A. Gutiérrez-Alejandre, «Liquid phase oxidation of dibenzothiophene with alumina-supported vanadium oxide catalysts: An alternative to deep desulfurization of diesel», Catalysis Today, vol. 142, n.o 3, pp. 227-233, abr. 2009, doi: 10.1016/j.cattod.2008.08.018.

J. L. García-Gutiérrez, G. A. Fuentes, M. E. Hernández-Terán, F. Murrieta, J. Navarrete, y F. Jiménez-Cruz, «Ultra-deep oxidative desulfurization of diesel fuel with H2O2 catalyzed under mild conditions by polymolybdates supported on Al2O3», Applied Catalysis A: General, vol. 305, n.o 1, pp. 15-20, may 2006, doi: 10.1016/j.apcata.2006.01.027.

D. Wang, E. W. Qian, H. Amano, K. Okata, A. Ishihara, y T. Kabe, «Oxidative desulfurization of fuel oil: Part I. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide», Applied Catalysis A: General, vol. 253, n.o 1, pp. 91-99, oct. 2003, doi: 10.1016/S0926-860X(03)00528-3.

A. Chica, A. Corma, y M. E. Dómine, «Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor», Journal of Catalysis, vol. 242, n.o 2, pp. 299-308, sep. 2006, doi: 10.1016/j.jcat.2006.06.013.

Y. Escalante et al., «MCM-41-supported vanadium catalysts structurally modified with Al or Zr for thiophene hydrodesulfurization», Appl Petrochem Res, vol. 9, n.o 1, pp. 47-55, mar. 2019, doi: 10.1007/s13203-019-0227-z.

A. R. J. M. Mattos, R. A. da Silva San Gil, M. L. M. Rocco, y J.-G. Eon, «Zinc-modified, alumina-supported vanadium oxides as catalysts for propane oxidative dehydrogenation», Journal of Molecular Catalysis A: Chemical, vol. 178, n.o 1, pp. 229-237, ene. 2002, doi: 10.1016/S1381-1169(01)00339-9.

E. Puello-Polo, Y. P. Reales, E. Marquez, D. G. Larruded, L. C. C. Arzuza, y C. A. T. Toloza, «Effect of Gallium and Vanadium in NiMoV/Al2O3-Ga2O3 Catalysts on Indole Hydrodenitrogenation», Catal Lett, vol. 151, n.o 7, pp. 2038-2055, jul. 2021, doi: 10.1007/s10562-020-03438-y.

W. Lai et al., «Efficient one pot synthesis of mesoporous NiMo–Al2O3 catalysts for dibenzothiophene hydrodesulfurization», Fuel Processing Technology, vol. 110, pp. 8-16, jun. 2013, doi: 10.1016/j.fuproc.2013.01.006.

M. Thommes et al., «Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)», Pure and Applied Chemistry, vol. 87, n.o 9-10, pp. 1051-1069, oct. 2015, doi: 10.1515/pac-2014-1117.

D. S. Mansilla, M. R. Torviso, E. N. Alesso, P. G. Vázquez, y C. V. Cáceres, «Synthesis and characterization of copper and aluminum salts of H3PMo12O40 for their use as catalysts in the eco-friendly synthesis of chromanes», Applied Catalysis A: General, vol. 375, n.o 2, pp. 196-204, mar. 2010, doi: 10.1016/j.apcata.2009.12.029.

E. Puello-Polo, E. Marquez, y J. L. Brito, «One-pot synthesis of Nb-modified Al2O3 support for NiMo hydrodesulfurization catalysts», J Sol-Gel Sci Technol, vol. 88, n.o 1, pp. 90-99, oct. 2018, doi: 10.1007/s10971-018-4792-x.

L. Leclercq et al., «Catalytic properties of transition metal carbides: I. Preparation and physical characterization of bulk mixed carbides of molybdenum and tungsten», Journal of Catalysis, vol. 117, n.o 2, pp. 371-383, jun. 1989, doi: 10.1016/0021-9517(89)90348-5.

M. Ayala-G, E. Puello P, P. Quintana, G. González-García, y C. Diaz, «Comparison between alumina supported catalytic precursors and their application in thiophene hydrodesulfurization: (NH 4 ) 4 [NiMo 6 O 24 H 6 ]·5H 2 O/γ-Al 2 O 3 and NiMoOx/γ-Al 2 O 3 conventional systems», RSC Adv., vol. 5, n.o 124, pp. 102652-102662, 2015, doi: 10.1039/C5RA17695F.

B. M. Reddy, K. N. Rao, G. K. Reddy, y P. Bharali, «Characterization and catalytic activity of V2O5/Al2O3-TiO2 for selective oxidation of 4-methylanisole», Journal of Molecular Catalysis A: Chemical, vol. 253, n.o 1, pp. 44-51, jul. 2006, doi: 10.1016/j.molcata.2006.03.016.

S. Usharani y V. Rajendran, «Size Controlled Synthesis and Characterization of V2O5/Al2O3 Nanocomposites», Colloid and Interface Science Communications, vol. 24, pp. 7-12, may 2018, doi: 10.1016/j.colcom.2018.03.001.

R. Romero Toledo, V. Ruiz Santoyo, C. D. Moncada Sánchez, y M. Martínes Rosales, «Effect of aluminum precursor on physicochemical properties of Al2O3 by hydrolysis/precipitation method», NS, vol. 10, n.o 20, pp. 83-99, may 2018, doi: 10.21640/ns.v10i20.1217.

C. Lei, M. Pi, D. Xu, C. Jiang, y B. Cheng, «Fabrication of hierarchical porous ZnO-Al2O3 microspheres with enhanced adsorption performance», Applied Surface Science, vol. 426, pp. 360-368, dic. 2017, doi: 10.1016/j.apsusc.2017.07.095.

L. R. Pizzio y M. N. Blanco, «Isoamyl acetate production catalyzed by H3PW12O40 on their partially substituted Cs or K salts», Applied Catalysis A: General, vol. 255, n.o 2, pp. 265-277, dic. 2003, doi: 10.1016/S0926-860X(03)00565-9.

K. Tanabe, T. Sumiyoshi, K. Shibata, T. Kiyoura, y J. Kitagawa, «A New Hypothesis Regarding the Surface Acidity of Binary Metal Oxides», BCSJ, vol. 47, n.o 5, pp. 1064-1066, may 1974, doi: 10.1246/bcsj.47.1064.

Descargas

Publicado

2022-09-01