MEAN VARIANCE PORTFOLIO SELECTION PROBLEM WITH MULTISCALE STOCHASTIC VOLATILITY

Authors

  • Carlos Granados Universidad de Antioquia

DOI:

https://doi.org/10.15665/rp.v20i2.2877

Keywords:

Mean-variance portfolio selection; Multiscale Stochastic Volatility; Efficient frontier; stochastic control, Probability.

Abstract

This paper discussed the mean-variance portfolio selection problem with multiscale stochastic volatility. We considered two type of volatility, including a fast –moving one and a slowly-moving one by using the stochastic dynamic programming principle and Hamilton-Jacobi-Bellman equation approach, the optimal investment strategy, the value function and the efficient frontier are derived in closed form.

References

Alizadeh, S., M. W. Brandt, and F. X. Diebold. 2002. Range-based estimation of stochastic volatility models. Journal of Finance 06:1047–1092.

Andersen, T. G., and T. Bollerslev. 1997. Intraday Periodicity and Volatility Persistence in Financial Markets. Journal of Empirical Finance 4:115–158

Chernov, M., R. Gallant, E. Ghysels, and G. Tauchen. 2003. Alternative models for stock price dynamics. Journal of Econometrics 116:225–257.

Chernov, M., R. Gallant, E. Ghysels, and G. Tauchen. 2003. Alternative models for stock price dynamics. Journal of Econometrics 116:225–257.

Chuangwei Lin and Li Zeng(2018) Mean-variance Portfolio Selection Problem with Vasicek Stochastic Interest Rates 3rd International Conference on Society Science and Economics Developmen 978-1-60595-031-0

Engle, R. F., and A. Patton. 2001. What good is a volatility model? Quantitative Finance 1:237–245.

Fouque, J. P., G. Papanicolaou, K. R. Sircar, and K. Solna. 2003a. Short time-scale in S&P 500 volatility. Journal of Computational Finance 6:1–23.

Fouque, J. P., Pun, C. S., & Wong, H. Y. (2016). Portfolio optimization with ambiguous correlation and stochastic volatilities. Social Science Electronic Publishing

Fouque, J.-P., Papanicolaou, G., Sircar, R., & Solna, K. (2011). Multiscale stochastic volatility for equity, interest rate and credit derivatives. Cambridge: Cambridge University Press

Gatheral, J. 2006. The Volatility Surface: a Practitioner’s Guide. Inc: John Wiley and Sons.

Daniel ,R and Marc Y, Continuous martingales and brownian motion, Springer Berlin Heidelberg, New York, 2005.

.Heston, S. L. 1993. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. The Review of Financial Studies 6:327– 343.

.Hillebrand, E. 2005. Neglecting parameter changes in GARCH models. Journal of Econometrics 1-2:121–138. 28

.LeBaron, B. 2001. Stochastic volatility as a simple generator of apparent financial power laws and long memory. Quantitative Finance 1:621–631.

Luenberger D.G, Optimization by vector space methods, Wiley, New York, 1968.

Musiela .M and Rutkowski M, Martingale methods in financial modelling, Springer Berlin Heidelberg, New York, 1997.

Downloads

Published

2022-09-01