Presencia del SARS-CoV-2 (COVID-19) en las aguas residuales y el papel de las plantas de tratamiento de aguas residuales en su eliminación

Autores/as

  • Saieth Baudilio Chaves Pabón Universidad Militar Nueva Granada
  • Zolly Margareth Suárez Verdugo Universidad Militar Nueva Granada

DOI:

https://doi.org/10.15665/rp.v20i1.2711

Palabras clave:

WRRF, SARS, coronavirus, wastewater, WWTP

Resumen

El presente articulo proporciona una visión general de la presencia del virus SARS-CoV-2 (COVID-19). La presencia del virus fue investigada por medio del método RT-PCR que permitió la identificación de los virus patógenos humanos predominantes que se encuentran en el agua residual y que viaja por medio de las alcantarillas urbanas. Se requiere información para presentar si las PTAR son suficiente para eliminar el virus o de lo contrario habría que implementar un paso adicional, por lo que se presentan las primeras investigaciones hechas alrededor del mundo: China, Australia, países Bajos, Estados Unidos, Francia y la India, en las que señalan, que si hay presencia de SARS-CoV-2 en aguas residuales y sobre todo se considera que las aguas residuales liberadas de los centros de cuarentena, hospitales u hogares con pacientes con COVID-19 desempeñan un papel potencial en la propagación de la infección. Por otro lado, se describieron las diferentes etapas de las plantas de tratamiento de aguas residuales en las cuales se determina si existe la presencia del virus SARS-CoV-2; teniendo en cuenta los análisis en cada una de ellas se describió los porcentajes de concentración del virus en el agua que ha sido tratada y además se presentaron los casos que han sido investigados alrededor del mundo, complementando las investigaciones ya realizadas en plantas de tratamiento de aguas residuales asociadas al primer evento de coronavirus en años anteriores. Las etapas finales en los procesos de detección del virus SARS-CoV-2 asistirán en la toma de decisiones para el uso del cloro o diferentes productos para su eliminación, así como también se vinculará la implementación de mecanismos con luces ultravioletas para la completa eliminación del virus en aguas ya tratadas, esto con el fin de proporcionar soluciones al manejo de aguas debidamente tratadas en las plantas de aguas residuales.

Citas

K. Azuma, U. Yanagi, N. Kagi, H. Kim, M. Ogata, M. Hayashi Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control Environ Health Prev Med, 25 (1) (2020), https://environhealthprevmed.biomedcentral.com/articles/10.1186/s12199-020-00904-2

Wölfel, R., Corman, V.M., Guggemos, W. et al. Virological assessment of hospitalized patients with COVID-2019. Nature 581, 465–469 (2020). https://doi.org/10.1038/s41586-020-2196-x

Xu, Y., Li, X., Zhu, B. et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med 26, 502–505 (2020). https://doi.org/10.1038/s41591-020-0817-4

J. Zhang, S. Wang, Y. XueFecal specimen diagnosis 2019 novel coronavirus-infected pneumonia J. Med. Virol., 92 (2020), pp. 680-682, https://onlinelibrary.wiley.com/doi/full/10.1002/jmv.25742

Samantha J. Mascuch, Sara Fakhretaha-Aval, Jessica C. Bowman, Minh Thu H. Ma, Gwendell Thomas, Bettina Bommarius, Chieri Ito, Liangjun Zhao, Gary P. Newnam, Kavita R. Matange, Hem R. Thapa, Brett Barlow, Rebecca K. Donegan, Nguyet A. Nguyen, Emily G. Saccuzzo, Chiamaka T. Obianyor, Suneesh C. Karunakaran, Pamela Pollet, Brooke Rothschild-Mancinelli, Santi Mestre-Fos, Rebecca Guth-Metzler, Anton V. Bryksin, Anton S. Petrov, Mallory Hazell, Carolyn B. Ibberson, Petar I. Penev, Robert G. Mannino, Wilbur A. Lam, Andrés J. Garcia, Julia Kubanek, Vinayak Agarwal, Nicholas V. Hud, Jennifer B. Glass, Loren Dean Williams, Raquel L. Lieberman, A blueprint for academic laboratories to produce SARS-CoV-2 quantitative RT-PCR test kits, Journal of Biological Chemistry, Volume 295, Issue 46, 2020, Pages 15438-15453, ISSN 0021-9258, http://www.sciencedirect.com/science/article/pii/S0021925817503798

Eiji Haramoto, Masaaki Kitajima, Akihiko Hata, Jason R. Torrey, Yoshifumi Masago, Daisuke Sano, Hiroyuki Katayama, A review on recent progress in the detection methods and prevalence of human enteric viruses in water, Water Research, Volume 135, 2018, Pages 168-186, ISSN 0043-1354, http://www.sciencedirect.com/science/article/pii/S0043135418301039.

Rodríguez-Díaz, J., Querales, L., Caraballo, L., Vizzi, E., Liprandi, F., Takif, H., et al. (2009). Detection and characterization of waterborne gastroenteritis viruses in urban sewage and sewagepolluted river waters in Caracas, Venezuela. Applied and Environmental Microbiology, 75(2), 387–394. https://aem.asm.org/content/75/2/387.full

Standard Methods For the Examination of Water and Wastewater. (2011). In 9510 detection of enteric viruses: American Public Health Association. https://www.standardmethods.org/doi/full/10.2105/SMWW.2882.202

World Health Organization. Laboratory testing for coronavirus disease (COVID-19) in suspected human cases: interim guidance. WHO/COVID-19/laboratory/2020.5. Geneva: WHO; 2020. Available from: https://www.who.int/publications-detail/laboratory-testing-for-2019-novel-coronavirus-in-suspectedhuman-cases-20200117

Ai Tang Xiao, Yi Xin Tong, Chun Gao, Li Zhu, Yu Jie Zhang, Sheng Zhang, Dynamic profile of RT-PCR findings from 301 COVID-19 patients in Wuhan, China: A descriptive study, Journal of Clinical Virology, Volume 127, 2020, 104346, ISSN 1386-6532, http://www.sciencedirect.com/science/article/pii/S1386653220300883

X.W. Wang, J. Li, T. Guo, B. Zhen, Q. Kong, B. Yi, Z. Li, N. Song, M. Jin, W. Xiao, X. Zhu, C. Gu, J. Yin, W. Wei, W. Yao, C. Liu, J. Li, G. Ou, M. Wang, T. Fang, G. Wang, Y. Qiu, H. Wu, F. Chao, J. Li “Concentration and detection of SARS coronavirus in sewage from Xiao Tang Shan hospital and the 309th Hospital of the Chinese People’s liberation Army” Water Sci. Technol., 52 (2005), pp. 213 221, https://doi.org/10.2166/wst.2005.0266

Warish Ahmed, Nicola Angel, Janette Edson, Kyle Bibby, Aaron Bivins, Jake W. O'Brien, Phil M. Choi, Masaaki Kitajima, Stuart L. Simpson, Jiaying Li, Ben Tscharke, Rory Verhagen, Wendy J.M. Smith, Julian Zaugg, Leanne Dierens, Philip Hugenholtz, Kevin V. Thomas, Jochen F. Mueller, “First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community”, Science of The Total Environment, Volume 728, 2020, 138764, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2020.138764

Medema, G.,Heijnen,L., Elsinga, G., Italiaander, R., & Brouwer, A. (2020). Presence of SARS-Coronavirus-2 in sewage. MedRxiv, https://www.medrxiv.org/content/10.1101/2020.03.29.20045880v1.full-text

FQ Wu, A Xiao, JB Zhang, XQ Gu, WL Lee, K Kauffman, WP Hanage, M Matus, N Ghaeli, N Endo, C Duvallet, K Moniz, TB Erickson, PR Chai, J Thompson, EJ Alm “SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases” https://www.medrxiv.org/content/10.1101/2020.04.05.20051540v1

S Wurtzer, V Marechal, JM Mouchel, Y Maday, R Teyssou, E Richard, JL Almayrac, L Moulin Evaluation of lockdown impact on SARS-CoV-2 dynamics through viral genome quantification in Paris wastewaters. https://doi.org/10.1101/2020.04.12.20062679

Manish Kumar, Arbind Kumar Patel, Anil V. Shah, Janvi Raval, Neha Rajpara, Madhvi Joshi, Chaitanya G. Joshi, First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2, Science of The Total Environment, Volume 746, 2020, 141326, ISSN 0048-9697, http://www.sciencedirect.com/science/article/pii/S0048969720348555

Shadi W. Hasan, Yazan Ibrahim, Marianne Daou, Hussein Kannout, Nila Jan, Alvaro Lopes, Habiba Alsafar, Ahmed F. Yousef, Detection and quantification of SARS-CoV-2 RNA in wastewater and treated effluents: Surveillance of COVID-19 epidemic in the United Arab Emirates, Science of The Total Environment, 2020, 142929, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2020.142929.

Paola Foladori, Francesca Cutrupi, Nicola Segata, Serena Manara, Federica Pinto, Francesca Malpei, Laura Bruni, Giuseppina La Rosa, SARS-CoV-2 from faeces to wastewater treatment: What do we know? A review, Science of The Total Environment, Volume 743, 2020, 140444, ISSN 0048-9697, http://www.sciencedirect.com/science/article/pii/S0048969720339668

Ahmed, W., Kitajima, M., Tandukar, S., & Haramoto, E. (2020). Recycled water safety: Current status of traditional and emerging viral indicators. Current Opinion in Environmental Science & Health, 16, 62-72. https://www.sciencedirect.com/science/article/abs/pii/S2468584420300180?via%3Dihub

Bhavini Saawarn, Subrata Hait, Occurrence, fate and removal of SARS-CoV-2 in wastewater: Current knowledge and future perspectives, Journal of Environmental Chemical Engineering, Volume 9, Issue 1, 2021, 104870, ISSN 2213-3437, http://www.sciencedirect.com/science/article/pii/S2213343720312197

Matthew E. Verbyla, James R. Mihelcic, A review of virus removal in wastewater treatment pond systems, Water Research, Volume 71, 2015, Pages 107-124, ISSN 0043-1354, https://doi.org/10.1016/j.watres.2014.12.031.

G.A. Shin, M.D. Sobsey Removal of norovirus from water by coagulation, flocculation and sedimentation process Water Sci. Technol. Water Supply, 15 (2015), pp. 158-163 https://doi.org/10.2166/ws.2014.100

Chaudhry, R. M., Nelson, K. L. & Drewes, J. E. Mechanisms of pathogenic virus removal in a full-scale membrane bioreactor. Environ. Sci. Technol. 49, 2815–2822 (2015). https://pubs.acs.org/doi/abs/10.1021/es505332n

Wigginton, K. R., Ye, Y. & Ellenberg, R. M. Emerging investigators series: the source and fate of pandemic viruses in the urban water cycle. Environ. Sci. Water Res. Technol. 1, 735–746 (2015). https://doi.org/10.1039/C5EW00125K

Ye, Y., Chang, P. H., Hartert, J. & Wigginton, K. R. Reactivity of enveloped virus genome, proteins, and lipids with free chlorine and UV 254. Environ. Sci. Technol. 52, 7698–7708 (2018). https://doi.org/10.1021/acs.est.8b00824

Randazzo, W. et al. SARS-CoV-2 RNA titers in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 181, 115942 (2020) https://www.sciencedirect.com/science/article/pii/S0043135420304796

Qiu, Y. et al. Assessment of human virus removal during municipal wastewater treatment in Edmonton, Canada. J. Appl. Microbiol. 119, 1729–1739 (2015). https://doi.org/10.1111/jam.12971

Derraik, J. G. B., Anderson, W. A., Connelly, E. A. & Anderson, Y. C. Rapid evidence summary on SARS-CoV-2 survivorship and disinfection, and a reusable PPE protocol using a double-hit process. Preprint at medRxiv https://doi.org/10.1101/2020.04.02.20051409 (2020).

Bodzek, M., Konieczny, K. & Rajca, M. Membranes in water and wastewater disinfection – review. Arch. Environ. Prot. 45, 3–18 (2019). 10.24425/aep.2019.126419

N. Shirasaki, T. Matsushita, Y. Matsui, K. Murai Evaluation of suitability of a plant virus, pepper mild mottle virus, as a surrogate of human enteric viruses for assessment of the efficay of coagulation-rapid sand filtration to remove those viruses Water Res., 129 (2018), pp. 460-469, 10.1016/j.watres.2017.11.043

N.T. Nguyen, T.H. Dao, T.T. Truong, T.M.T. Nguyen, T.D. Pham Adsorption characteristic of ciprofloxacin antibiotic onto synthesized alpha alumina nanoparticles with surface modification by polyanion J. Mol. Liq., 309 (2020), Article 113150, 10.1016/j.molliq.2020.113150

T.D. Pham, T.T. Tran, V.A. Le, T.T. Pham, T.H. Dao, T.S. Le, Adsorption characteristics of molecular oxytetracycline onto alumina particles: the role of surface modification with an anionic surfactant, 287, (2019), 110900. https://doi.org/10.1016/j.molliq.2019.110900

T.D. Pham, T.T. Pham, M.N. Phan, T.M.V. Ngo, V.D. Dang, C.M. Vu Adsorption characteristics of anionic surfactant onto laterite soil with differently charged surfaces and application for cationic dye removal J. Mol. Liq., 301 (2020), Article 112456, 10.1016/j.molliq.2020.112456

T.D. Pham, T.N. Vu, H.L. Nguyen, P.H.P. Le, T.S. Hoang Adsorptive removal of antibiotic ciprofloxacin from aqueous solution using protein-modified nanosilica Polymers, 12 (1) (2020), p. 57, 10.3390/polym12010057

J. Wang, J. Shen, D. Ye, X. Yan, Y. Zhang, W. Yang, et al. Disinfection technology of hospital wastes and wastewater: suggestions for disinfection strategy during coronavirus Disease 2019 (COVID-19) pandemic in China Environ. Pollut. (2020), p. 114665 https://doi.org/10.1016/j.envpol.2020.114665

A. Carducci, I. Federigi, F. Liu, J. Thompson, M. Verani Making waves: coronavirus detection, presence and persistence in the water environment: state of the art and knowledge needs for public health Water Res., 179 (2020), p. 115907 https://doi.org/10.1016/j.watres.2020.115907

G. Kampf, D. Todt, S. Pfaender, E. Steinmann Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents J. Hosp. Infect., 104 (3) (2020), pp. 246-251 https://doi.org/10.1016/j.jhin.2020.01.022

K. Kály-Kullai, M. Wittmann, Z. Noszticzius, L. Rosivall Can chlorine dioxide prevent the spreading of coronavirus or other viral infections? Medical hypotheses Phys. Int., 107 (1) (2020), pp. 1-11 https://doi.org/10.1556/2060.2020.00015

Fernando García-Ávila, Lorgio Valdiviezo-Gonzales, Manuel Cadme-Galabay, Horacio Gutiérrez-Ortega, Luis Altamirano-Cárdenas, César Zhindón- Arévalo, Lisveth Flores del Pino, Considerations on water quality and the use of chlorine in times of SARS-CoV-2 (COVID-19) pandemic in the community, Case Studies in Chemical and Environmental Engineering, Volume 2, 2020, 100049, ISSN 2666-0164 https://www.sciencedirect.com/science/article/pii/S2666016420300475

Cadnum JL, Mana TS, Jencson A, Thota P, Kundrapu S, Donskey CJ. Effectiveness of a hydrogen peroxide spray for decontamination of soft surfaces in hospitals. Am J Infect Control. 2015 Dec 1;43(12):1357-9. https://doi.org/10.1016/j.ajic.2015.07.016

Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020 Mar;104(3):246-251. https://doi.org/10.1016/j.jhin.2020.01.022

M. Zambrano-Monserrate, M.A. Ruano, L. Sanchez-Alcalde Indirect effects of COVID-19 on the environment Sci. Total Environ. (2020), p. 728, https://doi.org/10.1016/j.scitotenv.2020.138813

A. Núñez-Delgado. What do we know about the SARS-CoV-2 coronavirus in the environment? Sci. Total Environ., 727 (2020), Article 138647, https://pubs.rsc.org/en/content/articlelanding/2020/EW/D0EW90015J#!divAbstract

V. Naddeo, H. Liu. Editorial Perspectives: 2019 novel coronavirus (SARS-CoV-2): what is its fate in urban water cycle and how can the water research community respond? Environ Sci. Water Res., 6 (2020), pp. 1213-1216, https://pubs.rsc.org/en/content/articlelanding/2020/EW/D0EW90015J#!divAbstract

H. Zhang, W. Tang, Y. Chen, W. Yin. Disinfection threatens aquatic ecosystems. Science, 368 (6487) (2020), pp. 146-147, https://science.sciencemag.org/content/368/6487/146

Pubali Mandal, Ashok K. Gupta, Brajesh K. Dubey, A review on presence, survival, disinfection/removal methods of coronavirus in wastewater and progress of wastewater-based epidemiology, Journal of Environmental Chemical Engineering, Volume 8, Issue 5, 2020, 104317, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2020.104317.

H Hakim, C Thammakarn , A Suguro , et al. Evaluation of sprayed hypochlorous acid solutions for their virucidal activity against avian influenza virus through in vitro experiments. J Vet Med Sci , 77 ( 2015 ) , págs. 211 – 215 https://doi.org/10.1292/jvms.14-0413

Robinson, R. T., Mahfooz, N., Rosas-Mejia, O., Liu, Y., & Hull, N. M. (2021). SARS-CoV-2 disinfection in aqueous solution by UV222 from a krypton chlorine excilamp. medRxiv. https://doi.org/10.1101/2021.02.19.21252101

Abu-Ali, H., Yaniv, K., Bar-Zeev, E., Chaudhury, S., Shaga, M., Lakkakula, S., ... & Nir, O. (2020). Tracking SARS-CoV-2 RNA through the wastewater treatment process. medRxiv. https://doi.org/10.1101/2020.10.14.20212837

Gundy, P.M., Gerba, C.P., Pepper, I.L., 2009. Survival of Coronaviruses in Water and Wastewater. Food Environ. Virol. 1, 10. https://doi.org/10.1007/s12560-008-9001-6

Rimoldi, S.G., Stefani, F., Gigantiello, A., Polesello, S., Comandatore, F., Mileto, D., Maresca, M., Longobardi, C., Mancon, A., Romeri, F., Pagani, C., Moja, L., Gismondo, M.R., Salerno, F., 2020. Presence and vitality of SARS-CoV-2 virus in wastewaters and rivers. MedRxiv. https://doi.org/10.1101/2020.05.01.20086009

Jamie Shutler, Krzysztof Zaraska, Tom Holding, Monika Machnik, Kiranmai Uppuluri, Ian Ashton, Łukasz Migdał, Ravinder Dahiya. Risk of SARS-CoV-2 infection from contaminated water systems https://doi.org/10.1101/2020.06.17.20133504

Descargas

Publicado

2022-02-10

Número

Sección

Articles