Técnicas de Procesamiento Para Variables Posturales Enfocadas en Detección Temprana Del Microtraumatismo Tisular de un Ciclista

Autores/as

  • Ingeniero Universidad del Cauca
  • Mirian Yakeline Astorquiza Velasco
  • Doctor

DOI:

https://doi.org/10.15665/rp.v19i2.2644

Palabras clave:

ciclismo, postura, sistemas ópticos, sistemas inerciales, microtraumatismo tisular

Resumen

El microtraumatismo tisular (MT) es una de las causas del deterioro del rendimiento de un ciclista de cualquier categoría. A diferencia del macro-trauma, el MT se puede prevenir mediante una postura correcta, la cual ha sido estudiada por diferentes autores. Este artículo presenta una revisión sistemática que se centra en tres aspectos específicos: ¿Cuáles son las principales causas de los microtraumatismos tisulares? ¿Cuáles son las tecnologías utilizadas para medir los puntos de flexión de un ciclista? ¿Cuántas personas tienen el protocolo experimental incluido en los artículos? Para ello, se realiza una revisión en cuatro buscadores utilizando cadenas de búsqueda relacionadas con el tema, incluyendo resultados en un rango de 11 años y utilizando un proceso metodológico detallado. Finalmente, el artículo establece la importancia de los sistemas ópticos aplicados al deporte y la validación de tecnologías inerciales, que tienden a integrarse en la rutina diaria del ciclismo competitivo por sus ventajas.

Citas

M. R. Silberman, “Bicycling injuries,” Curr. Sports Med. Rep., vol. 12, no. 5, pp. 337–345, 2013, doi: 10.1249/JSR.0b013e3182a4bab7.

F. Diefenthaeler and M. A. Vaz, “Aspectos relacionados à fadiga durante o ciclismo: Uma abordagem biomecânica,” Rev. Bras. Med. do Esporte, vol. 14, no. 5, pp. 472–477, 2008, doi: 10.1590/S1517-86922008000500014.

T. Rodríguez, “Lesiones más frecuentes en el Triatlón, factores de riesgo y medidas de prevención,” Book, 2016.

A. L. Entrenamiento and D. E. L. Ciclista, “2. Adaptaciones Fisiológicas Al Entrenamiento Del Ciclista,” BioLaster/Apoyo Científico y Tecnológico para el Deport., pp. 2–33, 2008.

Á. G. de la R. H. Luis Tárrega Tarrero, Begoña Manuz González, “Lesiones deportivas versus accidentes deportivos. Documento de consenso. Grupo de prevención en el deporte de la Sociedad Española de Medicina del Deporte (SEMED-FEMEDE),” Arch. Med. del Deport. Rev. la Fed. Española Med. del Deport. y la Confed. Iberoam. Med. del Deport. ISSN 0212-8799, Vol. 35, No. Extra 1, 2018, págs. 6-16, vol. 35, no. 1, pp. 6–16, 2018.

T. S. Huang, J. Huang, and Y. C. Huang, “A study on comfort sensation of the road cycling body geometry fitting system,” Proc. 4th IEEE Int. Conf. Appl. Syst. Innov. 2018, ICASI 2018, pp. 1078–1081, 2018, doi: 10.1109/ICASI.2018.8394465.

R. R. Bini and F. P. Carpes, Biomechanics of Cycling, Ilustrada. Cham: Springer International Publishing, 2014.

R. Bini, P. A. Hume, and J. L. Croft, “Effects of Bicycle Saddle Height on Knee Injury,” Sport. Med., vol. 41, no. 6, pp. 463–476, 2011.

J. Kleinpaul, L. Mann, F. Diefenthaeler, A. Moro, and F. Carpes, “Aspectos determinantes do posicionamento corporal no ciclismo: uma revisão sistemática; Aspects determinants of body positioning for cycling: a systematic review,” Mot. Rev. Educ. Física, vol. 16, no. 4, pp. 1013–1023, 2010.

C. Pouliquen et al., “Spatiotemporal analysis of 3D kinematic asymmetry in professional cycling during an incremental test to exhaustion,” J. Sports Sci., vol. 36, no. 19, pp. 2155–2163, 2018, doi: 10.1080/02640414.2018.1432066.

E. S. Sazonov, G. Fulk, J. Hill, Y. Schutz, and R. Browning, “Monitoring of posture allocations and activities by a shoe-based wearable sensor,” IEEE Trans. Biomed. Eng., vol. 58, no. 4, pp. 983–990, 2011, doi: 10.1109/TBME.2010.2046738.

S. Leirdal and G. Ettema, “The relationship between cadence, pedalling technique and gross eYciency in cycling,” Eur. J. Appl. Physiol., vol. 111, no. 12, pp. 2885–2893, 2011, doi: 10.1007/s00421-011-1914-3.

R. R. Bini, C. P. Hoefelmann, V. P. Costa, and F. Diefenthaeler, “Reproducibility of upper leg EMG frequency content during cycling,” J. Sports Sci., vol. 36, no. 5, pp. 485–491, 2018, doi: 10.1080/02640414.2017.1318217.

R. Verma, E. A. Hansen, M. de Zee, and P. Madeleine, “Effect of seat positions on discomfort, muscle activation, pressure distribution and pedal force during cycling,” J. Electromyogr. Kinesiol., vol. 27, pp. 78–86, 2016, doi: 10.1016/j.jelekin.2016.02.003.

J. I. Priego Quesada, Z. Y. Kerr, W. M. Bertucci, and F. P. Carpes, “The association of bike fitting with injury, comfort, and pain during cycling: An international retrospective survey,” Eur. J. Sport Sci., vol. 19, no. 6, pp. 842–849, 2019, doi: 10.1080/17461391.2018.1556738.

T. C. JACQUES, F. J. LANFERDINI, R. R. BINI, and M. A. VAZ, “Implicações da cadência de pedalada sobre a potência mecânica e o período de contração muscular no ciclismo,” Rev. Bras. Educ. Física e Esporte, vol. 28, no. 3, pp. 387–394, 2014, doi: 10.1590/1807-55092014000300387.

F. Diefenthaeler, J. D. O. Berneira, V. L. Moro, and F. P. Carpes, “Influence of saddle height and exercise intensity on pedalling asymmetries in cyclists,” Brazilian J. Kinanthropometry Hum. Perform., vol. 18, no. 4, p. 411, 2016, doi: 10.5007/1980-0037.2016v18n4p411.

K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting systematic mapping studies in software engineering: An update,” Inf. Softw. Technol., vol. 64, pp. 1–18, 2015, doi: 10.1016/j.infsof.2015.03.007.

R. Doyscher, K. Kraus, B. Finke, and M. Scheibel, “Akutverletzungen und Überlastungsschäden der Schulter im Sport,” Orthopäde 43, pp. 1–6, 2014, doi: 10.1007/s00132-013-2141-x.

M. Alberto, R. Medina, and L. E. Física, “Ergonomics and sport of a cycling with hip dysplasia and shortening of the lower limbs .,” Rev. Col. Reh, vol. 12, pp. 14–21, 2013.

P. B. Lewis, D. Ruby, and C. A. Bush-Joseph, “Muscle Soreness and Delayed-Onset Muscle Soreness,” Clin. Sports Med., vol. 31, no. 2, pp. 255–262, 2012, doi: 10.1016/j.csm.2011.09.009.

X. Lu, K. Yu, Y. Zhang, J. Yi, J. Liu, and Q. Zhao, “Whole-Body Pose Estimation in Physical Rider-Bicycle Interactions with a Monocular Camera and Wearable Gyroscopes,” J. Dyn. Syst. Meas. Control. Trans. ASME, vol. 139, no. 7, pp. 4124–4129, 2017, doi: 10.1115/1.4035760.

L. L. Gómez Echeverry, A. M. Jaramillo Henao, M. A. Ruiz Molina, S. M. Velásquez Restrepo, C. A. Páramo Velásquez, and G. J. Silva Bolívar, “Human motion capture and analysis systems: a systematic review/Sistemas de captura y análisis de movimiento cinemático humano: una revisión sistemática,” Prospectiva, vol. 16, no. 2, pp. 24–34, Jul. 2018, doi: 10.15665/rp.v16i2.1587.

R. T. Yunardi, A. A. Firdaus, E. I. Agustin, and Pujiyanto, “Implementation of motion capture system for trajectory planning of leg swing simulator,” Proc. - 2017 Int. Semin. Sensor, Instrumentation, Meas. Metrol. Innov. Adv. Compet. Nation, ISSIMM 2017, vol. 2017-Janua, pp. 11–16, 2017, doi: 10.1109/ISSIMM.2017.8124252.

M. Lapinski et al., “A wide-range,wirelesswearable inertial motion sensing system for capturing fast athletic biomechanics in overhead pitching,” Sensors (Switzerland), vol. 19, no. 17, 2019, doi: 10.3390/s19173637.

A. Carranco, Jorge; Salgado, Francisco; Cando, “Posture Detection, Classifier and Correction System for Cyclists Applying KINECT V2 with Neural Nets and Fuzzy Logic,” IEEE Signal Process. Med. Biol. Symp., 2016.

J. I. Priego Quesada, P. Pérez-Soriano, A. G. Lucas-Cuevas, R. Salvador Palmer, and R. M. Cibrián Ortiz de Anda, “Effect of bike-fit in the perception of comfort, fatigue and pain,” J. Sports Sci., vol. 35, no. 14, pp. 1459–1465, 2017, doi: 10.1080/02640414.2016.1215496.

S. M. Malfatti and I. Yepes, “VirtualBike: An Exergame Designed to Cyclists,” in 2014 XVI Symposium on Virtual and Augmented Reality, May 2014, pp. 311–314, doi: 10.1109/SVR.2014.12.

J. Vrints, E. Koninckx, M. Van Leemputte, and I. Jonkers, “The effect of saddle position on maximal power output and moment generating capacity of lower limb muscles during isokinetic cycling,” J. Appl. Biomech., vol. 27, no. 1, pp. 1–7, 2011, doi: 10.1123/jab.27.1.1.

J. García-López, S. Díez-Leal, A. Ogueta-Alday, J. Larrazabal, and J. A. Rodríguez-Marroyo, “Differences in pedalling technique between road cyclists of different competitive levels,” J. Sports Sci., vol. 34, no. 17, pp. 1619–1626, Sep. 2016, doi: 10.1080/02640414.2015.1127987.

V. Ferrer-Roca, R. Bescos, A. Roig, P. Galilea, O. Valero, and J. García-López, “Acute effects of small changes in bicycle saddle height on gross efficiency and lower limb kinematics,” J. Strength Cond. Res., vol. 28, no. 3, pp. 784–791, 2014, doi: 10.1519/JSC.0b013e3182a1f1a9.

Y. L. Chen and K. C. He, “Changes in human cervical and lumbar spine curves while bicycling with different handlebar heights,” Work, vol. 41, no. SUPPL.1, pp. 5826–5827, 2012, doi: 10.3233/WOR-2012-0964-5826.

Y. L. Chen and Y. N. Liu, “Optimal protruding node length of bicycle seats determined using cycling postures and subjective ratings,” Appl. Ergon., vol. 45, no. 4, pp. 1181–1186, 2014, doi: 10.1016/j.apergo.2014.02.006.

S. Leirdal and G. Ettema, “The relationship between cadence, pedalling technique and gross efficiency in cycling,” Eur. J. Appl. Physiol., vol. 111, no. 12, pp. 2885–2893, 2011, doi: 10.1007/s00421-011-1914-3.

O. Kaplan et al., “Towards Situated Knee Trajectory Visualization for Self Analysis in Cycling,” 25th IEEE Conf. Virtual Real. 3D User Interfaces, VR 2018 - Proc., pp. 595–596, 2018, doi: 10.1109/VR.2018.8446212.

N. A. Turpin and B. Watier, “Cycling Biomechanics and Its Relationship to Performance,” Appl. Sci., vol. 10, no. 12, p. 4112, Jun. 2020, doi: 10.3390/app10124112.

G. Millour, S. Duc, F. Puel, and W. Bertucci, “Physiological, biomechanical, and subjective effects of medio-lateral distance between the feet during pedalling for cyclists of different morphologies,” J. Sports Sci., pp. 1–9, Nov. 2020, doi: 10.1080/02640414.2020.1845440.

G. A.-H. M. Aldana Uribe Isabela, autora. A4 - Rodas Arango, Isabella, autora. A4 - Friedrich Llorente, Gabriela, autora. A4 - Pérez Morales, María José, autora. A4 - Sandoval Carranza, María Alejandra, autora. A4 - Bigio Roitman, David, director/asesor. A4 - , “Secure dynamics : sistema de monitoreo postural e inalámbrico para indoor cycling : SportsBio Tech,” SportsBio Tech. Uniandes, 2019, [Online]. Available: http://hdl.handle.net/1992/44621.

R. R. Bini, F. Dagnese, E. Rocha, M. C. Silveira, F. P. Carpes, and C. B. Mota, “Three-dimensional kinematics of competitive and recreational cyclists across different workloads during cycling,” Eur. J. Sport Sci., vol. 16, no. 5, pp. 553–559, Jul. 2016, doi: 10.1080/17461391.2015.1135984.

L. A. Prosser, C. J. Stanley, T. L. Norman, H. S. Park, and D. L. Damiano, “Comparison of elliptical training, stationary cycling, treadmill walking and overground walking. Electromyographic patterns,” Gait Posture, vol. 33, no. 2, pp. 244–250, Feb. 2011, doi: 10.1016/j.gaitpost.2010.11.013.

A. Bouillod, A. Costes, G. Soto-Romero, E. Brunet, and F. Grappe, “Validity and Reliability of the 3D Motion Analyzer in Comparison with the Vicon Device for Biomechanical Pedalling Analysis,” in Proceedings of the 4th International Congress on Sport Sciences Research and Technology Support, 2016, pp. 63–66, doi: 10.5220/0006088200630066.

J. F. Kleinpaul, L. Mann, D. C. Dos Reis, F. P. Carpes, and A. R. P. Moro, “Efeito da altura do selim na cinemática da lombar de ciclistas,” Motriz. Rev. Educ. Fis., vol. 18, no. 4, pp. 783–794, 2012, doi: 10.1590/s1980-65742012000400016.

O. Kaplan, G. Yamamoto, T. Taketomi, A. Plopski, and H. Kato, “Video-based Visualization of Knee Movement in Cycling for Quantitative and Qualitative Monitoring,” Proc. 2019 12th Asia Pacific Work. Mix. Augment. Reality, APMAR 2019, pp. 1–5, 2019, doi: 10.1109/APMAR.2019.8709267.

W. Van Hoof, K. Volkaerts, K. O’Sullivan, S. Verschueren, and W. Dankaerts, “Comparing lower lumbar kinematics in cyclists with low back pain (flexion pattern) versus asymptomatic controls - field study using a wireless posture monitoring system,” Man. Ther., vol. 17, no. 4, pp. 312–317, 2012, doi: 10.1016/j.math.2012.02.012.

J. Cockcroft, J. H. Muller, and C. Scheffer, “A complementary filter for tracking bicycle crank angles using inertial sensors, kinematic constraints, and vertical acceleration updates,” IEEE Sens. J., vol. 15, no. 8, pp. 4218–4225, 2015, doi: 10.1109/JSEN.2015.2409314.

J. Cockcroft, J. H. Muller, and C. Scheffer, “A novel complimentary filter for tracking hip angles during cycling using wireless inertial sensors and dynamic acceleration estimation,” IEEE Sens. J., vol. 14, no. 8, pp. 2864–2871, 2014, doi: 10.1109/JSEN.2014.2318897.

R. Bini, D. Wundersitz, and M. Kingsley, “Biomechanical and physiological responses to electrically assisted cycling during simulated mail delivery,” Appl. Ergon., vol. 75, pp. 243–249, Feb. 2019, doi: 10.1016/j.apergo.2018.11.004.

R. R. Bini, L. Daly, and M. Kingsley, “Muscle force adaptation to changes in upper body position during seated sprint cycling,” J. Sports Sci., vol. 37, no. 19, pp. 2270–2278, Oct. 2019, doi: 10.1080/02640414.2019.1627983.

R. Bini, L. Daly, and M. Kingsley, “Changes in body position on the bike during seated sprint cycling: Applications to bike fitting,” Eur. J. Sport Sci., vol. 20, no. 1, pp. 35–42, Jan. 2020, doi: 10.1080/17461391.2019.1610075.

S. Cordillet, N. Bideau, B. Bideau, and G. Nicolas, “Estimation of 3D knee joint angles during cycling using inertial sensors: Accuracy of a novel sensor-to-segment calibration procedure based on pedaling motion,” Sensors (Switzerland), vol. 19, no. 11, 2019, doi: 10.3390/s19112474.

Y. Zhang, K. Chen, J. Yi, T. Liu, and Q. Pan, “Whole-Body Pose Estimation in Human Bicycle Riding Using a Small Set of Wearable Sensors,” IEEE/ASME Trans. Mechatronics, vol. 21, no. 1, pp. 163–174, 2016, doi: 10.1109/TMECH.2015.2490118.

X. Lu, Y. Zhang, K. Yu, J. Yi, and J. Liu, “Body-Segment Orientation Estimation in Rider-Bicycle Interactions With an Un-Calibrated Monocular Camera and Wearable Gyroscopes,” in Volume 2: Control, Monitoring, and Energy Harvesting of Vibratory Systems; Cooperative and Networked Control; Delay Systems; Dynamical Modeling and Diagnostics in Biomedical Systems; Estimation and Id of Energy Systems; Fault Detection; Flow and Thermal S, Oct. 2013, pp. 1–10, doi: 10.1115/DSCC2013-3839.

J. Y. Xu, X. Nan, V. Ebken, Y. Wang, G. J. Pottie, and W. J. Kaiser, “Integrated inertial sensors and mobile computing for real-time cycling performance guidance via pedaling profile classification,” IEEE J. Biomed. Heal. Informatics, vol. 19, no. 2, pp. 440–445, 2015, doi: 10.1109/JBHI.2014.2322871.

K. Chen, Y. Zhang, and J. Yi, “Modeling of rider-bicycle interactions with learned dynamics on constrained embedding manifolds,” IEEE/ASME Int. Conf. Adv. Intell. Mechatronics Mechatronics Hum. Wellbeing, AIM 2013, pp. 442–447, 2013, doi: 10.1109/AIM.2013.6584131.

Descargas

Publicado

2021-07-17