Sistema fotovoltaico como alternativa sostenible para el funcionamiento de una alcaldía municipal

Autores/as

  • Danny Daniel López Juvinao Doctor en ciencias gerenciales (URBE), Magister en gerencia empresarial (URBE), Ingeniero en minas (UPTC)
  • BELISSA JANETH VARGAS CAMPO Universidad de La Guajira

DOI:

https://doi.org/10.15665/rp.v19i1.2530

Palabras clave:

photovoltaic system, sustainability, alternative energies, clean technologies, innovation, Dibulla - La Guajira.

Resumen

Esta investigación tiene como propósito proponer un sistema fotovoltaico como alternativa sostenible para el mejoramiento de la prestación del servicio de energía eléctrica en la Alcaldía Municipal de Dibulla. Metodológicamente, presenta un enfoque mixto, acude a un diseño de investigación analítica, no experimental transaccional, de campo, de carácter documental, con un tipo de estudio descriptivo y fuentes de información secundarias. Se utilizó una encuesta a 68 sujetos de la dirección y extensión de la alcaldía municipal de Dibulla (La Guajira), utilizando un cuestionario de 26 ítems con opciones de respuestas múltiples, validado por (2) expertos, por Alfa Cronbach reflejó 0.95 de confiabilidad. Las derivaciones encontradas identifican la ineficiencia que presenta el operador de energía en la prestación del servicio, a la vez se presenta un esquema del sistema fotovoltaico conectado a red, con base en el consumo y las características eléctricas del edificio. Concluyendo qué el diseño del sistema fotovoltaico interconectado a la red de la alcaldía municipal de Dibulla originará en este subsistema, una nueva cultura de eficiencia y ahorro energético a través del uso de fuentes renovables que contribuirán a mejorar las condiciones laborales de los funcionarios tanto administrativos como operativos.

Biografía del autor/a

Danny Daniel López Juvinao, Doctor en ciencias gerenciales (URBE), Magister en gerencia empresarial (URBE), Ingeniero en minas (UPTC)

Doctor en Ciencias Gerenciales. Magister gerencia empresarial. Ingeniero en minas. Profesor de planta, Facultad de ingeniería. Universidad de La Guajira. Grupo de investigación Ipaitug. Riohacha, Colombia. https://orcid.org/0000-0002-9304-1105  Email: dlopezj@uniguajira.edu.co

BELISSA JANETH VARGAS CAMPO, Universidad de La Guajira

Magister en gestión de la tecnología e innovación, Ingeniera industrial. Universidad de La Guajira. Grupo de investigación Ipaitug. Riohacha, Colombia

Citas

D. Rodríguez-Urrego and L. Rodríguez-Urrego, “Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects,” Renew. Sustain. Energy Rev., vol. 92, no. May 2017, pp. 160–170, 2018, doi: 10.1016/j.rser.2018.04.065.

A. R. López et al., “Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market,” Renew. Energy, vol. 148, pp. 1266–1279, 2020, doi: 10.1016/j.renene.2019.10.066.

F. León-Vargas, M. García-Jaramillo, and E. Krejci, “Pre-feasibility of wind and solar systems for residential self-sufficiency in four urban locations of Colombia: Implication of new incentives included in Law 1715,” Renew. Energy, vol. 130, pp. 1082–1091, 2019, doi: 10.1016/j.renene.2018.06.087.

A. Haghighat Mamaghani, S. A. Avella Escandon, B. Najafi, A. Shirazi, and F. Rinaldi, “Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia,” Renew. Energy, vol. 97, pp. 293–305, 2016, doi: 10.1016/j.renene.2016.05.086.

Congreso de la republica, “Ley 1715 de 2014.”

E. E. Gaona, C. L. Trujillo, and J. A. Guacaneme, “Rural microgrids and its potential application in Colombia,” Renew. Sustain. Energy Rev., vol. 51, pp. 125–137, 2015, doi: 10.1016/j.rser.2015.04.176.

B. J. Ruiz and V. Rodríguez-Padilla, “Renewable energy sources in the Colombian energy policy, analysis and perspectives,” Energy Policy, vol. 34, no. 18, pp. 3684–3690, 2006, doi: 10.1016/j.enpol.2005.08.007.

Z. Wang, J. Li, J. Liu, and C. Shuai, “Is the photovoltaic poverty alleviation project the best way for the poor to escape poverty? ——A DEA and GRA analysis of different projects in rural China,” Energy Policy, vol. 137, no. November 2019, p. 111105, 2020, doi: 10.1016/j.enpol.2019.111105.

A. Vides-Prado et al., “Techno-economic feasibility analysis of photovoltaic systems in remote areas for indigenous communities in the Colombian Guajira,” Renew. Sustain. Energy Rev., vol. 82, no. May 2017, pp. 4245–4255, 2018, doi: 10.1016/j.rser.2017.05.101.

L. Rodríguez Urrego, J. Valencia Llanos, D. Rodríguez Urrego, and A. Martínez Garcia, “Design, implementation and operation of a solar hybrid system in a remote area in the Colombian Guajira desert,” WIT Trans. Ecol. Environ., vol. 195, pp. 427–438, 2015, doi: 10.2495/ESUS150361.

J. C. Beltrán, A. J. Aristizábal, A. López, M. Castaneda, S. Zapata, and Y. Ivanova, “Comparative analysis of deterministic and probabilistic methods for the integration of distributed generation in power systems,” Energy Reports, vol. 6, no. September 2019, pp. 88–104, 2020, doi: 10.1016/j.egyr.2019.10.025.

L. Lopez et al., “Sizing of renewable energy sources to support resilience in distribution networks,” Procedia Comput. Sci., vol. 155, no. 2018, pp. 535–542, 2019, doi: 10.1016/j.procs.2019.08.074.

G. Carvajal-Romo, M. Valderrama-Mendoza, D. Rodríguez-Urrego, and L. Rodríguez-Urrego, “Assessment of solar and wind energy potential in La Guajira, Colombia: Current status, and future prospects,” Sustain. Energy Technol. Assessments, vol. 36, no. August, p. 100531, 2019, doi: 10.1016/j.seta.2019.100531.

M. V. Chamorro, E. V. Ortíz, and L. A. Viana, “Cuantificación y caracterización de la radiación solar en el departamento de La Guajira-Colombia mediante el cálculo de transmisibilidad atmosférica,” Prospectiva, vol. 13, no. 2, pp. 54–63, 2015.

M. Ur Rehman and X. Vinh VO, “Do Alternative Energy Markets Provide Optimal Alternative Investment Opportunities?,” North Am. J. Econ. Financ., p. 101271, 2020, doi: 10.1016/j.najef.2020.101271.

N. Amin, S. Ahmad Shahahmadi, P. Chelvanathan, K. S. Rahman, M. Istiaque Hossain, and M. D. Akhtaruzzaman, Solar Photovoltaic Technologies: From Inception Toward the Most Reliable Energy Resource, vol. 3. Elsevier, 2017.

L. Hernández-Callejo, S. Gallardo-Saavedra, and V. Alonso-Gómez, “A review of photovoltaic systems: Design, operation and maintenance,” Sol. Energy, vol. 188, no. June, pp. 426–440, 2019, doi: 10.1016/j.solener.2019.06.017.

O. P. Mahela and A. G. Shaik, “Comprehensive overview of grid interfaced solar photovoltaic systems,” Renew. Sustain. Energy Rev., vol. 68, no. October 2016, pp. 316–332, 2017, doi: 10.1016/j.rser.2016.09.096.

N. Vázquez and J. Vázquez, Photovoltaic System Conversion, 4th ed. Elsevier Inc., 2018.

A. A. Bayod-Rújula, Solar photovoltaics (PV). Elsevier Inc., 2019.

R. Sampieri and C. P. Mendoza, Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta. México: McGraw Hill, 2018.

and M. del P. B. L. R. Hernández Sampieri, C. Fernández Collado, Metodología de la investigación, 6th ed. México, 2014.

J. W. Creswell, Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 3rd ed. Londres / Nueva Delhi: SAGE Publiations Ltd., 2003.

F. G. Arias, El Proyecto de Investigación Introducción a la metodología científica, 6th ed. Caracas - República Bolivariana de Venezuela, 2012.

Superintendencia de Servicios Públicos Domiciliarios, “Informe ejecutivo diagnóstico de la calidad del servicio de energía eléctrica en Colombia 2016.,” Bogota D.C., 2017. [Online]. Available: https://www.superservicios.gov.co/sites/default/archivos/SSPD Publicaciones/Publicaciones/2018/Oct/20170521_informeejecutivocalidaddelserviciofinal_1.pdf.

C. Li, W. Cai, H. Luo, and Q. Zhang, “Power utilization strategy in smart residential community using non-cooperative game considering customer satisfaction and interaction,” Electr. Power Syst. Res., vol. 166, no. October 2018, pp. 178–189, 2019, doi: 10.1016/j.epsr.2018.10.006.

M. del P. Sánchez Muñoz and M. I. Usaquén Chía, “Economía de los servicios públicos domiciliarios, más allá del mercado y del Estado,” Equidad y Desarro., no. 17, p. 31, 2012, doi: 10.19052/ed.66.

J. M. G. Sánchez and L. C. Manfredi, “EMCEL, how to implement a proper service recovery?,” Estud. Gerenciales, vol. 32, no. 140, pp. 290–294, 2016, doi: 10.1016/j.estger.2016.09.001.

J. C. Bustamante, “Use of mediating and moderating variables in explaining consumer loyalty in service environments,” Estud. Gerenciales, vol. 31, no. 136, pp. 299–309, 2015, doi: 10.1016/j.estger.2015.05.002.

E. F. Subióte, S. Román, and P. J. M. Castejón, “La Influencia De La Consideración Social En La Relación Cliente-Proveedor De Servicios Y El Papel Moderador Del Tipo De Servicio *,” Rev. Española Investig. Mark. ESIC, vol. 17, no. 1, pp. 39–59, 2013, doi: 10.1016/s1138-1442(14)60018-8.

N. Fuentes, G. Osorio, and A. Mungaray, “Capacidades Intangibles Para La Competitividad Microempresarial En México,” Probl. Desarro., vol. 47, no. 186, pp. 83–106, 2016, doi: 10.1016/j.rpd.2016.03.003.

F. L. Scott, C. R. Jones, and T. L. Webb, “What do people living in deprived communities in the UK think about household energy efficiency interventionsα,” Energy Policy, vol. 66, no. September 2011, pp. 335–349, 2014, doi: 10.1016/j.enpol.2013.10.084.

V. K. Eswarlal, G. Vasudevan, P. K. Dey, and P. Vasudevan, “Role of community acceptance in sustainable bioenergy projects in India,” Energy Policy, vol. 73, pp. 333–343, 2014, doi: 10.1016/j.enpol.2014.04.019.

T. Van Der Schoor and B. Scholtens, “Power to the people: Local community initiatives and the transition to sustainable energy,” Renew. Sustain. Energy Rev., vol. 43, pp. 666–675, 2015, doi: 10.1016/j.rser.2014.10.089.

E. Songsore and M. Buzzelli, “Social responses to wind energy development in Ontario: The influence of health risk perceptions and associated concerns,” Energy Policy, vol. 69, pp. 285–296, 2014, doi: 10.1016/j.enpol.2014.01.048.

R. Antunes Campos, L. Rafael do Nascimento, and R. Rüther, “The complementary nature between wind and photovoltaic generation in Brazil and the role of energy storage in utility-scale hybrid power plants,” Energy Convers. Manag., vol. 221, no. June, p. 113160, 2020, doi: 10.1016/j.enconman.2020.113160.

V. De Crescenzo, R. Baratta, and F. Simeoni, “Citizens’ engagement in funding renewable and energy efficiency projects: a fuzzy set analysis,” J. Clean. Prod., p. 135577, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.124060.

UPME, Integración de las Energías Renovables No Convencionales en Colombia. 2015.

F. Gallouj and J. Sundbo, “Innovation as a loosely coupled system in services Jon Sundbo Faïz Gallouj,” Int. J. Serv. Technol. Manag. J. Serv. Technol. Manag., vol. 1, no. 1, pp. 15–36, 2000.

S. L. Vargo, H. Wieland, and M. A. Akaka, “Innovation through institutionalization: A service ecosystems perspective,” Ind. Mark. Manag., vol. 44, no. 2013, pp. 63–72, 2015, doi: 10.1016/j.indmarman.2014.10.008.

N. Martinez and N. Komendantova, “The effectiveness of the social impact assessment (SIA) in energy transition management: Stakeholders’ insights from renewable energy projects in Mexico,” Energy Policy, vol. 145, no. June 2019, p. 111744, 2020, doi: 10.1016/j.enpol.2020.111744.

M. J. Pereira-Blanco, “Tratamiento Jurídico De Las Energias Renovables En Colombia : Ahorro Energético , Eficiencia,” Rev. Jurídica MArio Alario D’Filippo, vol. IX, no. 17, pp. 43–68, 2016.

IDEAM, UPME, and Ministerio De Minas y Energia, “Atlas de Radiación Solar de Colombia,” Ideam, p. 166, 2005, [Online]. Available: https://biblioteca.minminas.gov.co/pdf/Atlas de radiación solar Colombia.pdf.

M. Arrieta Paternina, L. Olmos Villalba, J. Izquierdo Nuñez, and R. Álvarez López, “Diseño de prototipo de sistema solar fotovoltaico optimizando el ángulo de inclinación de los paneles solares,” Prospectiva, vol. 10, no. 1, pp. 97–107, 2012, doi: 10.15665/rp.v10i1.401.

Y. Salas Reyes, H. I. Gómez Blanco, M. Vanegas Chamorro, G. Valencia Ochoa, and E. Villicaña Ortíz, “Technical and economic design of a photovoltaic solar test bank for power generation off-grid/Diseño técnico y económico de un banco de prueba solar fotovoltaico para generación de energía eléctrica de forma aislada,” Prospectiva, vol. 16, no. 2, pp. 82–88, 2018, doi: 10.15665/rp.v16i2.1653.

Instituto Colombiano de Normas Técnicas y Certificación, “Código eléctrico colombiano NTC2050,” Código Eléctrico Colomb., p. 847, 1998.

P. Pérez Montoro, “Instalación Fotovoltaica en Nave Industrial Para Autoconsumo Conectada a la Red Eléctrica,” 2013.

C. J. Díaz Urbina, “Análisis del impacto sobre las protecciones eléctricas al instalar sistemas solares fotovoltaicos en una red de distribución con nivel de tensión 13.2 kV.,” Universidad Nacional de Colombia, 2015.

D. Deb and N. L. Brahmbhatt, “Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution,” Renew. Sustain. Energy Rev., vol. 82, no. October 2017, pp. 3306–3313, 2018, doi: 10.1016/j.rser.2017.10.014.

Descargas

Publicado

2021-02-17

Número

Sección

Articles