ESTUDIO ONIOM2-DFT DE LA INTERACCIÓN DE N2, O2 Y NO CON Ce-MOR: SITIOS ACTIVOS Y TERMODINÁMICA

Autores/as

  • Rodolfo Izquierdo Universidad del Zulia
  • Néstor Cubillán Universidad del Atlántico
  • Ana Pérez Laboratorio de Química Teórica y Computacional, Departamento de Química, Facultad Experimental de Ciencias, Universidad del Zulia, Maracaibo, Venezuela.

DOI:

https://doi.org/10.15665/rp.v19i1.2513

Palabras clave:

ONIOM, DFT, deNOx, Cerio

Resumen

Se realizó un estudio teórico para la adsorción de N2, O2, NO y NO+ con mordenita (MOR) modificada con Cerio (Ce). Se empleó una metodología ONIOM de dos capas (ONIOM2, del inglés our own two -layer Integrated molecular Orbital + molecular Mechanics), combinando cálculos UFF (del inglés Universal Force Field) y DFT (del inglés Density Functional Theory) para el bajo y alto nivel, respectivamente. Se estudió la formación de especies activas de Ce basadas en la adsorción de CeO+ sobre las posiciones cristalográficas T1, T2 y T4 en la H-MOR. Los resultados geométricos, vibracionales y termodinámicos indican que el átomo de Ce del CeO+ se enlaza exotérmica y espontáneamente a dos de los oxígenos cristalográficos no equivalentes (Om) de MOR (TnOm1Om2 ) según: T1O1O4, T1O2O3, T2O4O7, T2O5O7 y T4O7O10 (T: Al o Si). Los resultados de la interacción de N2, O2, NO y NO+ con Ce-MOR indican que sólo ocurren adsorciones exotérmicas y espontáneas sobre los sitios activos ubicados sobre el canal principal del anillo de 12 miembros (12-MR) según: T1O1O4, T2O5O7 y T4O7O10. En general, el sistema Ce-MOR estabiliza a las especies electrofílicas [CeO(NO+)], con posible actividad para reacciones deNOx en presencia de reductores nucleofilicos como el NH3; mientras que para las especies CeO(NO) adsorbidas sobre MOR se reporta un equilibrio dinámico entre las adsorciones κ1NO, κ1ON, κ2NO que podrían ser aplicables para catálisis deNOx en ausencia de reductores. Sobre la base de las funciones termodinámicas de reacción se propone que el sitio más probable para la ubicación del CeO+ activo es T2O5O7.

Citas

U. Ngwaka, A. Smallbone, B. Jia, C. Lawrence, B. Towell, S. Roy, S. KV, A.P. Roskilly, “Evaluation of performance characteristics of a novel hydrogen-fuelled free-piston engine generator,” Int. J. Hydrogen Energy, in press, 2020.

E. Zwolińska, Y. Sun, A. G. Chmielewski, and A. Pawelec, “Removal of high concentrations of NOx and SO 2 from diesel off-gases using a hybrid electron beam technology,” Energy Reports, 6, 952–964, 2020.

R. Wunsch, C. Schön, M. Frey, D. Tran, S. Proske, T. Wandrey, M. Kalogirou, J. Schäffner, “Detailed experimental investigation of the NOx reaction pathways of three-way catalysts with focus on intermediate reactions of NH3 and N2O,” Appl. Catal. B Environ., 272, 118937, 2020.

Z. Liu and S. Ihl Woo, “Recent advances in catalytic DeNOX Science and Technology,” Catal. Rev. - Sci. Eng., 48,(1), 43–89, 2006.

F. Garin, “Mechanism of NOx decomposition,” Appl. Catal. A Gen., 222(1–2), 183–219, 2001.

V. Praveena and M. L. J. Martin, “A review on various after treatment techniques to reduce NOx emissions in a CI engine,” Journal of the Energy Institute, 91(5), 704–720, 2018.

Z. Zhang, J. D. Atkinson, B. Jiang, M. J. Rood, and Z. Yan, “NO oxidation by microporous zeolites: Isolating the impact of pore structure to predict NO conversion,” Appl. Catal. B Environ.,163, 573–583, 2015.

A. Lindholm, H. Sjövall, and L. Olsson, “Reduction of NOx over a combined NSR and SCR system,” Appl. Catal. B Environ., 98(3–4), 112–121, 2010.

T. Demuth, J. Hafner, L. Benco, and H. Toulhoat, “Structural and Acidic Properties of Mordenite. An ab Initio Density-Functional Study,” J. Phys. Chem. B, 104(19), 4593–4607, 2000.

Y. Liu et al., “Effect of lanthanum species on the physicochemical properties of La/SAPO-11 molecular sieve,” J. Catal., 347, 170–184, 2017.

J. Lu, H. Hao, L. Zhang, Z. Xu, L. Zhong, Y. Zhao, D. He, J. Liu, D. Chen, H. Pu, S. He, Y. Luo, “The investigation of the role of basic lanthanum (La) species on the improvement of catalytic activity and stability of HZSM-5 material for eliminating methanethiol-(CH3SH),” Appl. Catal. B Environ., 237, 185–197, 2018.

M. Iwamoto, H. Furukawa, Y. Mine, F. Uemura, S. I. Mikuriya, and S. Kagawa, “Copper(II) Ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide,” J. Chem. Soc. - Ser. Chem. Commun., 16, 1272–1273, 1986.

E. Ito, R.J. Hultermans, P.M. Lugt, M.H.W. Burgers, M.S. Rigutto, H. van Bekkum, C.M. van den Bleek, “Selective reduction of NOx with ammonia over cerium-exchanged mordenite,” Appl. Catal. B, Environ., 4(1), 95–104, 1994.

L. Qiu, F.U. Ying, Z.H.E.N.G. Jinyu, H.U.A.N.G. Nangui, L.U. Lijun, G.A.O. Xiuzhi, X.I.N. Mudi, L.U.O. Yibin, S.H.I. Yanqiang, X.U. Guangtong, “Investigation on the cation location, structure and performances of rare earth-exchanged Y zeolite,” J. Rare Earths, 35(7), 658–666, 2017.

H. Yahiro, T. Nagano, and H. Yamaura, “Direct decomposition of nitrogen monoxide over Cu-MFI containing rare-earth elements: Sm and Gd as promoter,” Catal. Today, 126(3-4), 284–289, 2007.

E. Ito, Y. J. Mergler, B. E. Nieuwenhuys, P. M. Lugt, H. Van Bekkum, and C. M. Van den Bleek, “NOx reduction with ammonia over cerium exchanged mordenite in the presence of oxygen. An ir mechanistic study,” Stud. Surf. Sci. Catal., 98, 146–147, 1995.

A. S. H. Density and F. Ash, “Selected Conversion of NO , by Cotalytic Reduction with Ammonia,” 1, 1982.

E. Ito, Y. J. Mergler, B. E. Nieuwenhuys, H. van Bekkum, and C. M. van den Bleek, “Infrared studies of NO adsorption and co-adsorption of NO and O2 onto cerium-exchanged mordenite (CeNaMOR),” Microporous Mater., 4(6), 455–465, 1995.

S. A. Peter, J. Sebastian, and R. V. Jasra, “Adsorption of nitrogen, oxygen, and argon in mono-, di-, and trivalent cation-exchanged zeolite mordenite,” Ind. Eng. Chem. Res., 44(17),6856–6864, 2005.

L. Jiang and Q. Xu, “Matrix infrared spectroscopic and theoretical studies on the reactions of late lanthanoid atoms with nitrous oxide in excess argon,” J. Phys. Chem. A, 113(13), 3121–3126, 2009.

FRISCH M.J., et. al. GAUSSIAN09, Gaussian INC, Pittsburgh, PA, 2009.

D. K. Papayannis, A. M. Kosmas, and N. Tsolakis, “Computational study of ethanethiol conversion reactions catalyzed by acidic zeolites,” Microporous Mesoporous Mater., 262, 59–67, 2018.

K. Morokuma, “ONIOM and its applications to material chemistry and catalyses,” Bull. Korean Chem. Soc., vol. 24(6),797–801, 2003.

M. P. Andersson and P. Uvdal, “New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis Set 6-311+G(d,p),” J. Phys. Chem. A, vol. 109(12), 2937–2941, 2005.

M. Brändle and J. Sauer, “Acidity differences between inorganic solids induced by their framework structure. A combined quantum mechanics/molecular mechanics ab initio study on zeolites,” J. Am. Chem. Soc., 120(7), 1556–1570, 1998.

M. Elanany, D.P. Vercauteren, M. Koyama, M. Kubo, P. Selvam, E. Broclawik, A. Miyamoto, “H-MOR: Density functional investigation for the relative strength of Brønsted acid sites,” J. Mol. Catal. A Chem., 243, 1–7, 2006.

R. Izquierdo, L. J. Rodríguez, R. Añez, and A. Sierraalta, “Direct catalytic decomposition of NO with Cu-ZSM-5: A DFT-ONIOM study,” J. Mol. Catal. A Chem., vol. 348, no. 1–2, pp. 55–62, 2011.

G. Blyholder, “Molecular orbital view of chemisorbed carbon monoxide,” J. Phys. Chem., 68, 2772–2778, 1964.

M. Iwamoto and H. Hamada, “Removal of nitrogen monoxide from exhaust gases through novel catalytic processes,” Catal. Today, 10, 57–71, 1991.

H. Berndt, F. W. Schütze, M. Richter, T. Sowade, and W. Grünert, “Selective catalytic reduction of NO under lean conditions by methane and propane over indium/cerium-promoted zeolites,” Appl. Catal. B Environ., 40, 51–67, 2003.

V. I. Pârvulescu, M.A. Centeno, “Effect of the support upon the behavior of Cu in NO decomposition exemplified on Cu-ZSM-5 containing Zr,” Catal. Today, 54, 507–519, 1999.

Descargas

Publicado

2021-02-17

Número

Sección

Articles