Singlet Oxygen Quantum Yield of Zinc and Copper Tetracarboxyphthalocyanine: Experimental and Theoretical Study

Photophysical Study of tetracarboxioftalocianinas

Autores/as

  • Jesús Peña
  • William Andres Vallejo Universidad del Atlántico
  • Carlos E. Diaz Uribe

DOI:

https://doi.org/10.15665/rp.v19i2.2491

Palabras clave:

Phthalocyanine, Quantum yield, Rubrene, Sensitizer, Singlet oxygen

Resumen

The metal-phthalocyanine coordination complexes can absorb visible light with great efficiency. Besides, these compounds have prolific catalytic activity in multiple reactions e.g. electron and/or energy transfer reactions. The singlet oxygen production quantum yield (FD) is an important physical property in photochemistry filed to develop practical applications as sensitizers for medical and environmental treatments. In this work, we determined theorical and experimental photophysical properties of both zinc and copper tetracarboxylic-phthalocyanines named TcPcZn) and TcPcCu respectively.  The FD was determined by using the chemical trapping method with rubrene, besides, we determined both the optimized structures of the phthalocyanines and the reactivity of the compounds thorough out set of global reactivity descriptors for using the conceptual density functional theory (DFT). The calculated electronic properties of TcPcCu and TcPcZn provide HOMO-LUMO energy gap of 2.14 and 2.15 eV respectively, furthermore, the TcPcCu and TcPcZn where a planar conformation of the macrocycles with metallic centers. Finally, photophysical characterization show a FD value for TcPcZn of 0.37 and 0.25 for the TcPcCu indicating compounds are suitable as sensitizers for photochemical applications.

Citas

Li, X.; Peng, X.H.; Zheng, B. De; Tang, J.; Zhao, Y.; Zheng, B.Y.; Ke, M.R.; Huang, J.D. New application of phthalocyanine molecules: From photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates. Chem. Sci. 2018, 9, 2098–2104.

Mazur, L.M.; Roland, T.; Leroy-Lhez, S.; Sol, V.; Samoc, M.; Samuel, I.D.W.; Matczyszyn, K. Efficient Singlet Oxygen Photogeneration by Zinc Porphyrin Dimers upon One- and Two-Photon Excitation. J. Phys. Chem. B 2019, 123, 4271–4277.

Espitia-Almeida, F.; Díaz-Uribe, C.; Vallejo, W.; Gómez-Camargo, D.; Romero-Bohorquez, A.R.; Schott, E.; Zarate, X. Synthesis and Characterization of 5,10,15,20-Tetrakis(4-ethylphenyl)porphyrin and (Zn2+, Mn2+, Sn2+, Ni2+, Al3+, V3+)-Derivatives: Photophysical and DFT study. ChemistrySelect 2019, 4, 6290–6294.

Andrade, C.G.; Figueiredo, R.C.B.Q.; Ribeiro, K.R.C.; Souza, L.I.O.; Sarmento-Neto, J.F.; Rebouças, J.S.; Santos, B.S.; Ribeiro, M.S.; Carvalho, L.B.; Fontes, A. Photodynamic effect of zinc porphyrin on the promastigote and amastigote forms of Leishmania braziliensis. Photochem. Photobiol. Sci. 2018, 17, 482–490.

Pinto, J.G.; Pereira, A.H.C.; de Oliveira, M.A.; Kurachi, C.; Raniero, L.J.; Ferreira-Strixino, J. Chlorin E6 phototoxicity in L . major and L . braziliensis promastigotes— In vitro study. Photodiagnosis Photodyn. Ther. 2016, 15, 19–24.

Ormond, A.; Freeman, H. Dye Sensitizers for Photodynamic Therapy. Materials (Basel). 2013, 6, 817–840.

Lan, M.; Zhao, S.; Liu, W.; Lee, C.S.; Zhang, W.; Wang, P. Photosensitizers for Photodynamic Therapy. Adv. Healthc. Mater. 2019, 8, e1900132.

Slomp, A.M.; Barreira, S.M.W.; Carrenho, L.Z.B.; Vandresen, C.C.; Zattoni, I.F.; Ló, S.M.S.; Dallagnol, J.C.C.; Ducatti, D.R.B.; Orsato, A.; Duarte, M.E.R.; et al. Photodynamic effect of meso-(aryl)porphyrins and meso-(1-methyl-4-pyridinium)porphyrins on HaCaT keratinocytes. Bioorganic Med. Chem. Lett. 2017, 27, 156–161.

Krumova, K.; Cosa, G. Chapter 1. Overview of Reactive Oxygen Species. In Singlet Oxygen: Applications in Biosciences and Nanosciences; 2016; pp. 1–21.

Marin, D.M.; Payerpaj, S.; Collier, G.S.; Ortiz, A.L.; Singh, G.; Jones, M.; Walter, M.G. Efficient intersystem crossing using singly halogenated carbomethoxyphenyl porphyrins measured using delayed fluorescence, chemical quenching, and singlet oxygen emission. Phys. Chem. Chem. Phys. 2015, 17, 29090–29096.

Nonell, S.; Redmond, R.W. On the determination of quantum yields for singlet molecular oxygen photosensitization. J. Photochem. Photobiol. B Biol. 1994, 22, 171–172.

Černý, J.; Karásková, M.; Rakušan, J.; Nešpůrek, S. Reactive oxygen species produced by irradiation of some phthalocyanine derivatives. J. Photochem. Photobiol. A Chem. 2010, 210, 82–88.

Achar, B.N.; Fohlent, G.M.; Parkeri’ &, J.A.; Keshavayya, J. Preparation and structural investigations of copper(II), cobalt(II), nickel(II) and zinc(II) derivatives of 2,9,16,23-phthalocyanine tetracarboxylic acid,. Indian J. Chem. 1988, 27, 411–416.

Nardello, V.; Marti, M.-J.; Pierlot, C.; Aubry, J.-M. Photochemistry without Light: Oxidation of Rubrene in a Microemulsion with a Chemical Source of Singlet Molecular Oxygen (1O2, 1Dg). J. Chem. Educ. 1999, 76, 1285.

Horspool, W. Organic photochemistry : a comprehensive treatment / William Horspool, Diego Armesto. - Princeton University Library Catalog; Prentice Hall, 1992; ISBN 0136394779.

Bonacin, J.A.; Engelmann, F.M.; Severino, D.; Toma, H.E.; Baptista, M.S. Singlet Oxygen Quantum Yields (φΔ) in Water using Beetroot Extract and an Array of LEDs. J. Braz. Chem. Soc. 2009, 20, 31–36.

Entradas, T.; Waldron, S.; Volk, M. The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. J. Photochem. Photobiol. B Biol. 2020, 204, 111787.

Tsui, S.M.; Chu, W. Quantum yield study of the photodegradation of hydrophobic dyes in the presence of acetone sensitizer. In Proceedings of the Chemosphere; Pergamon, 2001; Vol. 44, pp. 17–22.

Krieg, M. Determination of singlet oxygen quantum yields with 1,3-diphenylisobenzofuran in model membrane systems. J. Biochem. Biophys. Methods 1993, 27, 143–149.

Becke, A.D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.

Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

Paul, D. Quantum mechanics of many-electron systems. Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character 1929, 123, 714–733.

Diaz-Uribe, C.E.; Vallejo, W.; Castellar, W.; Trilleras, J.; Ortiz, S.; Rodriguez-Serrano, A.; Zarate, X.; Quiroga, J. Novel (E)-1-(pyrrole-2-yl)-3-(aryl)-2-(propen-1-one) derivatives as efficient singlet oxygen quenchers: kinetics and quantum chemical calculations. RSC Adv. 2015, 5, 71565–71572.

Parr, R.G.; Szentpály, L. V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922–1924.

Mathai, S.; Smith, T.A.; Ghiggino, K.P. Singlet oxygen quantum yields of potential porphyrin-based photosensitisers for photodynamic therapy. Photochem. Photobiol. Sci. 2007, 6, 995–1002.

Vallejo, W.; Diaz-Uribe, C.; Cantillo, Á. Methylene blue photocatalytic degradation under visible irradiation on TiO2 thin films sensitized with Cu and Zn tetracarboxy-phthalocyanines. J. Photochem. Photobiol. A Chem. 2015, 299.

LION, Y.; DELMELLE, M.; VAN DE VORST, A. New method of detecting singlet oxygen production. Nature 1976, 263, 442–443.

Descargas

Publicado

2022-01-27