BAGAZO DE MALTA (BSG): BIORRESIDUO CON POTENCIAL APLICACIÓN A NIVEL FUNCIONAL, MATERIAL Y ENERGÉTICO

Autores/as

  • Clara Inés Camacho Villa Universidad del Atlántico, Programa de Química
  • CARLOS DAVID GRANDE TOVAR Universidad del Atlántico

DOI:

https://doi.org/10.15665/rp.v19i1.2472

Resumen

La producción de cerveza corresponde a una de las agroindustrias más importantes del mundo. Según la FAO, se producen 113.654 millones de toneladas de cerveza al año, que implican una producción incontrolada de residuos, de los cuales el 85% corresponde al bagazo de malta (BSG), un residuo altamente contaminante que eleva los índices de materia orgánica al disponerse de manera inapropiada en vertederos y rellenos sanitarios. No obstante, la incorporación de esta biomasa hacia otros procesos productivos como alternativa para el cierre de ciclos y propiciar una economía circular resulta de gran utilidad. La presente revisión, tiene como propósito mostrar el nivel de evidencia científica existente en el aprovechamiento de BSG, como un sistema integrado que permita la producción de cervezas sostenibles, haciendo énfasis en la producción de metabolitos útiles en procesos fermentativos que le otorgan valor agregado para su explotación como materia prima en la obtención de alimentos funcionales, biomateriales, carbon activado y biocombustibles.

Citas

I. S. Hornsey, “Beer: History and Types,” B. Caballero, P. M. Finglas, and F. B. T.-E. of F. and H. Toldrá, Eds. Oxford: Academic Press, 2016, pp. 345–354.

W. Kunze, “Technology brewing and malting. 5 th revised English edition,” VLB Berlin, 2014.

G. Dragone, J. B. Almeida e Silva, D. P. Silva, and L. Santos, “Elaboración de cervezas en Brasil: proceso de altas densidades,” Ind. Aliment., vol. 5, pp. 44–46, 2002.

A. W. KHAN, M. S. RAHMAN, and T. ANO, “Application of malt residue in submerged fermentation of Bacillus subtilis,” J. Environ. Sci., vol. 21, pp. S33–S35, 2009.

Robert Hendricks (2008) Brewer Spent Grains [Internet], flickr.com. Disponible desde: <https://www.flickr.com/photos/rahbysahn/2256326061/in/photolist-4rog8t-gnifof-gniy9x-gnhUSQ-e67L1T-nsB3UX-25YAjDh-2gGoUZb-rpt4UB-qsFGFM-e7q4s7-nsB3PM-noMSzo-aiQ8v2-4rog5B-2cX4kVZ-2k9PZsk-nqy6r7-2kcViCe-2hBokpM-kRzE4Y-2hBokz6-v7mrRk-v7dKKJ-2hBkwLn-8e4CBC-8Fczot-2cC57jH-xwNG5G-2hefCog-QzAKM6-2gSBrmj-2589LVn-2g4QBvT-65imeX-jrjE9F-4hXeKJ-6ajpXS-6ajpQL-2h69P4j-2ewkmjB-TccdLJ-4PHYgH-2dyBjEt-2cj35ov-AQywHq-7uf861-2aJ6rUw-8ogbdC-23uCRBu/.> [Acceso 16 diciembre de 2020].

S. I. Mussatto, G. Dragone, and I. C. Roberto, “Brewers’ spent grain: generation, characteristics and potential applications,” J. Cereal Sci., vol. 43, no. 1, pp. 1–14, 2006.

W. Artifon et al., “Enzymatic hydrolysis behavior on malt bagasse for fermentative sugar disposal in thermostatic and ultrasonic bath,” Environ. Qual. Manag., vol. 29, no. 4, pp. 87–94, Jun. 2020.

T. Arias Lafargue and L. López Ríos, “Propuesta tecnológica para el aprovechamiento energético del bagazo de cebada malteada de la cervecería Hatuey,” Tecnol. Química, vol. 35, no. 3, 2015.

“Global Forest Resources Assessment 2020,” Global Forest Resources Assessment 2020, 2020. .

M. T. García-Cubero, P. E. Plaza, M. Coca, S. Lucas, and G. González-Benito, “Autohydrolysis of brewer’s spent grain (BSG) as pretreatment for the production of liquid biofuels,” N. Biotechnol, vol. 33, p. 88, 2016.

S. T. Cooray, J. J. L. Lee, and W. N. Chen, “Evaluation of brewers’ spent grain as a novel media for yeast growth,” AMB Express, vol. 7, no. 1, pp. 1–10, 2017.

C. José, P. Prinsen, and A. Gutiérrez, “Chemical composition of lipids in brewer’s spent grain: A promising source of valuable phytochemicals,” J. Cereal Sci., vol. 58, no. 2, pp. 248–254, 2013.

A. J. Jay et al., “A systematic micro-dissection of brewers’ spent grain,” J. Cereal Sci., vol. 47, no. 2, pp. 357–364, 2008.

E. F. Vieira, D. D. da Silva, H. Carmo, and I. M. Ferreira, “Protective ability against oxidative stress of brewers’ spent grain protein hydrolysates,” Food Chem., vol. 228, pp. 602–609, 2017.

S. F. Reis, E. Coelho, M. A. Coimbra, and N. Abu-Ghannam, “Improved efficiency of brewer’s spent grain arabinoxylans by ultrasound-assisted extraction,” Ultrason. Sonochem., vol. 24, pp. 155–164, 2015.

C. Teixeira, M. Nyman, R. Andersson, and M. Alminger, “Application of a dynamic gastrointestinal in vitro model combined with a rat model to predict the digestive fate of barley dietary fibre and evaluate potential impact on hindgut fermentation,” Bioact. Carbohydrates Diet. Fibre, vol. 9, pp. 7–13, 2017.

A.-M. Aura et al., “Release of small phenolic compounds from brewer’s spent grain and its lignin fractions by human intestinal microbiota in vitro,” J. Agric. Food Chem., vol. 61, no. 40, pp. 9744–9753, 2013.

E. Vieira et al., “Valuation of brewer’s spent grain using a fully recyclable integrated process for extraction of proteins and arabinoxylans,” Ind. Crops Prod., vol. 52, pp. 136–143, 2014.

S. Wilkinson, K. A. Smart, and D. J. Cook, “Optimisation of alkaline reagent based chemical pre-treatment of Brewers spent grains for bioethanol production,” Ind. Crops Prod., vol. 62, pp. 219–227, 2014.

N. G. T. Meneses, S. Martins, J. A. Teixeira, and S. I. Mussatto, “Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains,” Sep. Purif. Technol., vol. 108, pp. 152–158, 2013.

N. Wolters, C. Schabronath, G. Schembecker, and J. Merz, “Efficient conversion of pretreated brewer’s spent grain and wheat bran by submerged cultivation of Hericium erinaceus,” Bioresour. Technol., vol. 222, pp. 123–129, 2016.

T. Aggelopoulos, A. Bekatorou, A. Pandey, M. Kanellaki, and A. A. Koutinas, “Discarded oranges and brewer’s spent grains as promoting ingredients for microbial growth by submerged and solid state fermentation of agro-industrial waste mixtures,” Appl. Biochem. Biotechnol., vol. 170, no. 8, pp. 1885–1895, 2013.

A. L. McCarthy, Y. C. O’Callaghan, A. Connolly, C. O. Piggott, R. J. FitzGerald, and N. M. O’Brien, “In vitro antioxidant and anti-inflammatory effects of brewers’ spent grain protein rich isolate and its associated hydrolysates,” Food Res. Int., vol. 50, no. 1, pp. 205–212, 2013.

M. Hashemi, S. H. Razavi, S. A. Shojaosadati, and S. M. Mousavi, “The potential of brewer’s spent grain to improve the production of α-amylase by Bacillus sp. KR-8104 in submerged fermentation system,” N. Biotechnol., vol. 28, no. 2, pp. 165–172, 2011.

J.-M. Bonmatin, O. Laprévote, and F. Peypoux, “Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents,” Comb. Chem. High Throughput Screen., vol. 6, no. 6, pp. 541–556, 2003.

C. D. Grande-Tovar, “Valoración biotecnológica de residuos agrícolas y agroindustriales,” Editor. Bonaventuriana. Calí, Colomb., vol. 180, 2016.

T. Aggelopoulos, K. Katsieris, A. Bekatorou, A. Pandey, I. M. Banat, and A. A. Koutinas, “Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production,” Food Chem., vol. 145, pp. 710–716, 2014.

A. L. McCarthy et al., “The hydroxycinnamic acid content of barley and brewers’ spent grain (BSG) and the potential to incorporate phenolic extracts of BSG as antioxidants into fruit beverages,” Food Chem., vol. 141, no. 3, pp. 2567–2574, 2013.

S. Liang and C. Wan, “Carboxylic acid production from brewer’s spent grain via mixed culture fermentation,” Bioresour. Technol., vol. 182, pp. 179–183, 2015.

A. Gregori, M. Švagelj, B. Pahor, M. Berovič, and F. Pohleven, “The use of spent brewery grains for Pleurotus ostreatus cultivation and enzyme production,” N. Biotechnol., vol. 25, no. 2–3, pp. 157–161, 2008.

S. Gupta, A. K. Jaiswal, and N. Abu-Ghannam, “Optimization of fermentation conditions for the utilization of brewing waste to develop a nutraceutical rich liquid product,” Ind. Crops Prod., vol. 44, pp. 272–282, 2013.

A. Djukić-Vuković, D. Mladenović, M. Radosavljević, S. Kocić-Tanackov, J. Pejin, and L. Mojović, “Wastes from bioethanol and beer productions as substrates for l (+) lactic acid production–A comparative study,” Waste Manag., vol. 48, pp. 478–482, 2016.

J. Poerschmann, R. Koehler, and B. Weiner, “Identification and quantification of 2, 5-diketopiperazine platform biochemicals along with pyrazines and pyridinols in the dissolved organic matter phase after hydrothermal carbonization of brewer’s spent grain,” Environ. Technol. Innov., vol. 5, pp. 95–105, 2016.

A. Connolly, C. O. Piggott, and R. J. FitzGerald, “Characterisation of protein‐rich isolates and antioxidative phenolic extracts from pale and black brewers’ spent grain,” Int. J. Food Sci. Technol., vol. 48, no. 8, pp. 1670–1681, 2013.

A. Murakami et al., “FA15, a hydrophobic derivative of ferulic acid, suppresses inflammatory responses and skin tumor promotion: comparison with ferulic acid,” Cancer Lett., vol. 180, no. 2, pp. 121–129, 2002.

W.-C. Chang, C.-H. Hsieh, M.-W. Hsiao, W.-C. Lin, Y.-C. Hung, and J.-C. Ye, “Caffeic acid induces apoptosis in human cervical cancer cells through the mitochondrial pathway,” Taiwan. J. Obstet. Gynecol., vol. 49, no. 4, pp. 419–424, 2010.

R. Nagasaka, C. Chotimarkorn, I. M. Shafiqul, M. Hori, H. Ozaki, and H. Ushio, “Anti-inflammatory effects of hydroxycinnamic acid derivatives,” Biochem. Biophys. Res. Commun., vol. 358, no. 2, pp. 615–619, 2007.

H. Yoshida and R. Kisugi, “Mechanisms of LDL oxidation,” Clin. Chim. Acta, vol. 411, no. 23–24, pp. 1875–1882, 2010.

E. O. Kim, K. J. Min, T. K. Kwon, B. H. Um, R. A. Moreau, and S. W. Choi, “Anti-inflammatory activity of hydroxycinnamic acid derivatives isolated from corn bran in lipopolysaccharide-stimulated Raw 264.7 macrophages,” Food Chem. Toxicol., vol. 50, no. 5, pp. 1309–1316, 2012.

M. M. Moreira, D. O. Carvalho, R. P. S. de Oliveira, B. Johansson, and L. F. Guido, “Brewer’s spent grains protects against oxidative DNA damage in Saccharomyces cerevisiae,” 2017.

J. Li, T. Kaneko, L.-Q. Qin, J. Wang, and Y. Wang, “Effects of barley intake on glucose tolerance, lipid metabolism, and bowel function in women,” Nutrition, vol. 19, no. 11–12, pp. 926–929, 2003.

S. Spinelli, A. Conte, and M. A. Del Nobile, “Microencapsulation of extracted bioactive compounds from brewer’s spent grain to enrich fish-burgers,” Food Bioprod. Process., vol. 100, pp. 450–456, 2016.

S. Patel and S. Shukla, “Fermentation of food wastes for generation of nutraceuticals and supplements,” in Fermented foods in health and disease prevention, Elsevier, 2017, pp. 707–734.

M. H. Alu’datt et al., “Preparation, characterization, nanostructures and bio functional analysis of sonicated protein co-precipitates from brewers’ spent grain and soybean flour,” Food Chem., vol. 240, pp. 784–798, 2018.

A. Ktenioudaki, N. O’Shea, and E. Gallagher, “Rheological properties of wheat dough supplemented with functional by-products of food processing: Brewer’s spent grain and apple pomace,” J. Food Eng., vol. 116, no. 2, pp. 362–368, 2013.

N. C. Steinmacher, F. A. Honna, A. V Gasparetto, D. Anibal, and M. V. E. Grossmann, “Bioconversion of brewer’s spent grains by reactive extrusion and their application in bread-making,” LWT-Food Sci. Technol., vol. 46, no. 2, pp. 542–547, 2012.

C. Cappa and C. Alamprese, “Brewer’s spent grain valorization in fiber-enriched fresh egg pasta production: Modelling and optimization study,” LWT-Food Sci. Technol., vol. 82, pp. 464–470, 2017.

H.-W. Kim et al., “Effects of dietary fiber extracts from brewer’s spent grain on quality characteristics of chicken patties cooked in convective oven,” Korean J. Food Sci. An, vol. 33, no. 1, pp. 45–52, 2013.

A. Ktenioudaki, L. Alvarez-Jubete, T. J. Smyth, K. Kilcawley, D. K. Rai, and E. Gallagher, “Application of bioprocessing techniques (sourdough fermentation and technological aids) for brewer’s spent grain breads,” Food Res. Int., vol. 73, pp. 107–116, 2015.

V. Faist, M. Lindenmeier, C. Geisler, H. F. Erbersdobler, and T. Hofmann, “Influence of molecular weight fractions isolated from roasted malt on the enzyme activities of NADPH− cytochrome c− reductase and glutathione-S-transferase in Caco-2 Cells,” J. Agric. Food Chem., vol. 50, no. 3, pp. 602–606, 2002.

M. Mesías and C. Delgado-Andrade, “Melanoidins as a potential functional food ingredient,” Curr. Opin. Food Sci., vol. 14, pp. 37–42, 2017.

L. C. Carrillo, J. Londoño-Londoño, and A. Gil, “Comparison of polyphenol, methylxanthines and antioxidant activity in Theobroma cacao beans from different cocoa-growing areas in Colombia,” Food Res. Int., vol. 60, pp. 273–280, 2014.

B. Hucker, L. Wakeling, and F. Vriesekoop, “Investigations into the thiamine and riboflavin content of malt and the effects of malting and roasting on their final content,” J. Cereal Sci., vol. 56, no. 2, pp. 300–306, 2012.

M. Sajib et al., “Valorization of Brewer’s spent grain to prebiotic oligosaccharide: production, xylanase catalyzed hydrolysis, in-vitro evaluation with probiotic strains and in a batch human fecal fermentation model,” J. Biotechnol., vol. 268, pp. 61–70, 2018.

V. Stojceska and P. Ainsworth, “The effect of different enzymes on the quality of high-fibre enriched brewer’s spent grain breads,” Food Chem., vol. 110, no. 4, pp. 865–872, 2008.

G. Mandalari, G. Bisignano, R. B. Lo Curto, K. W. Waldron, and C. B. Faulds, “Production of feruloyl esterases and xylanases by Talaromyces stipitatus and Humicola grisea var. thermoidea on industrial food processing by-products,” Bioresour. Technol., vol. 99, no. 11, pp. 5130–5133, 2008.

T. R. Dhiman, H. R. Bingham, and H. D. Radloff, “Production response of lactating cows fed dried versus wet brewers’ grain in diets with similar dry matter content,” J. Dairy Sci., vol. 86, no. 9, pp. 2914–2921, 2003.

J. Byrne, “FDA reviewing part of animal feed rule after fury over spent grains proposal,” May-2014. .

Economia Cat., “Damm. Sostenibilidad y economía circular en el proceso de elaboración de cerveza ,” 2018.

F. S. Stefanello et al., “Analysis of polyphenols in brewer’s spent grain and its comparison with corn silage and cereal brans commonly used for animal nutrition,” Food Chem., vol. 239, pp. 385–401, 2018.

H. Seddighi and K. Thomas, “Economic returns of using brewery’s spent grain in animal feed,” World Acad. Sci. Eng. Technol., no. 74, pp. 701–705, 2011.

N. G. Belibasakis and D. Tsirgogianni, “Effects of wet brewers grains on milk yield, milk composition and blood components of dairy cows in hot weather,” Anim. Feed Sci. Technol., vol. 57, no. 3, pp. 175–181, 1996.

V. I. Kaur and P. K. Saxena, “Incorporation of brewery waste in supplementary feed and its impact on growth in some carps,” Bioresour. Technol., vol. 91, no. 1, pp. 101–104, 2004.

C. Castillo, V. Pereira, Á. Abuelo, and J. Hernández, “Effect of supplementation with antioxidants on the quality of bovine milk and meat production,” Sci. World J., vol. 2013, 2013.

A. Faccenda et al., “Use of dried brewers’ grains instead of soybean meal to feed lactating cows,” Rev. Bras. Zootec., vol. 46, no. 1, pp. 39–46, Jan. 2017.

K. Amoah, P. Asiedu, P. Wallace, Z. G, and S. W. A. Rhule, “The performance of pigs at different phases of growth on sun-dried brewers spent grain,” Livest. Res. Rural Dev., vol. 29, no. 5, 2017.

A. Radzik-Rant et al., “The effect of the addition of wet brewers grain to the diet of lambs on body weight gain, slaughter valueand meat quality,” Arch. Anim. Breed., vol. 61, no. 2, pp. 245–251, Jun. 2018.

E. E. S. Lora, “Bioenergía y biorrefinerías para caña de azúcar y palma de aceite,” Rev. Palmas, vol. 37, pp. 119–136, 2016.

R. Liguori, C. R. Soccol, L. Porto de Souza Vandenberghe, A. L. Woiciechowski, and V. Faraco, “Second generation ethanol production from brewers’ spent grain,” Energies, vol. 8, no. 4, pp. 2575–2586, 2015.

C. D. Grande Tovar, Aprovechamiento de residuos agroindustriales: biocombustibles, no. 662.88 G751a. Universidad de San Buenaventura, 2014.

H. Wang et al., “Biomethanation from enzymatically hydrolyzed brewer’s spent grain: impact of rapid increase in loadings,” Bioresour. Technol., vol. 190, pp. 167–174, 2015.

M. Sežun, V. Grilc, G. D. Zupančič, and R. Marinšek-Logar, “Anaerobic digestion of brewery spent grain in a semi-continuous bioreactor: inhibition by phenolic degradation products,” Acta Chim Slov, vol. 58, no. 1, pp. 158–166, 2011.

S. Wilkinson, K. A. Smart, S. James, and D. J. Cook, “Bioethanol production from brewers spent grains using a fungal consolidated bioprocessing (CBP) approach,” Bioenergy Res., vol. 10, no. 1, pp. 146–157, 2017.

C. Xiros and P. Christakopoulos, “Enhanced ethanol production from brewer’s spent grain by a Fusarium oxysporum consolidated system,” Biotechnol. Biofuels, vol. 2, no. 1, p. 4, 2009.

P. E. Plaza, L. J. Gallego-Morales, M. Peñuela-Vásquez, S. Lucas, M. T. García-Cubero, and M. Coca, “Biobutanol production from brewer’s spent grain hydrolysates by Clostridium beijerinckii,” Bioresour. Technol., vol. 244, pp. 166–174, 2017.

E. Mallen and V. Najdanovic-Visak, “Brewers’ spent grains: Drying kinetics and biodiesel production,” Bioresour. Technol. Reports, vol. 1, pp. 16–23, 2018.

M. K. Arantes, H. J. Alves, R. Sequinel, and E. A. da Silva, “Treatment of brewery wastewater and its use for biological production of methane and hydrogen,” Int. J. Hydrogen Energy, vol. 42, no. 42, pp. 26243–26256, 2017.

J. Zhang and L. Zang, “Enhancement of biohydrogen production from brewers’ spent grain by calcined-red mud pretreatment,” Bioresour. Technol., vol. 209, pp. 73–79, 2016.

I. C. Gonçalves, A. Fonseca, A. M. Morão, H. M. Pinheiro, A. P. Duarte, and M. I. A. Ferra, “Evaluation of anaerobic co-digestion of spent brewery grains and an azo dye,” Renew. Energy, vol. 74, pp. 489–496, 2015.

C. Xiros, E. Topakas, P. Katapodis, and P. Christakopoulos, “Hydrolysis and fermentation of brewer’s spent grain by Neurospora crassa,” Bioresour. Technol., vol. 99, no. 13, pp. 5427–5435, 2008.

H. Luo et al., “Effectively enhancing acetone concentration and acetone/butanol ratio in ABE fermentation by a glucose/acetate co-substrate system incorporating with glucose limitation and C. acetobutylicum/S. cerevisiae co-culturing,” Biochem. Eng. J., vol. 118, pp. 132–142, 2017.

“Resumen Ejecutivo ‘Evaluación del ciclo de vida de la cadena de producción de biocombustibles en Colombia’. BID Banco Interamericano de Desarrollo MME Ministerio de Minas y Energía MADR Ministerio de Agricultura y Desarrollo Rural MAVDT Ministerio del Med,” 2012.

L. M. W. Beharry, “MCS-APB tiger brewery–brewery spent grain questions,” 2015.

A. Sanna, S. Li, R. Linforth, K. A. Smart, and J. M. Andrésen, “Bio-oil and bio-char from low temperature pyrolysis of spent grains using activated alumina,” Bioresour. Technol., vol. 102, no. 22, pp. 10695–10703, 2011.

E. S. Rojo et al., “Preparation, characterization and in vitro osteoblast growth of waste-derived biomaterials,” RSC Adv., vol. 4, no. 25, pp. 12630–12639, 2014.

K. Formela et al., “Structural, thermal and physico-mechanical properties of polyurethane/brewers’ spent grain composite foams modified with ground tire rubber,” Ind. Crops Prod., vol. 108, pp. 844–852, 2017.

A. George, K. Simet, A. Carradorini, and N. Faour, “Brewer’s Spent Grain to Xylitol & Polylactic Acid,” 2017.

M.-A. Berthet et al., “Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging,” Ind. Crops Prod., vol. 69, pp. 110–122, 2015.

P. Klímek, R. Wimmer, P. K. Mishra, and J. Kúdela, “Utilizing brewer’s-spent-grain in wood-based particleboard manufacturing,” J. Clean. Prod., vol. 141, pp. 812–817, 2017.

S. C. L. Sousa, J. P. Silva, A. M. M. Ramos, and R. Simoes, “Pulping and papermaking potential of brewery spent grain,” Cellul. Chem. Technol., vol. 41, no. 2–3, pp. 183–191, 2007.

W. Russ, H. Mörtel, and R. Meyer-Pittroff, “Application of spent grains to increase porosity in bricks,” Constr. Build. Mater., vol. 19, no. 2, pp. 117–126, 2005.

Descargas

Publicado

2021-02-17

Número

Sección

Articles