Inherent safety assessment of a valorization alternative for shrimp wastes under the concept of biorefinery

Evaluación de la seguridad inherente de una topología para el aprovechamiento integral del camarón bajo el concepto de biorefinería

Autores/as

  • Angel Darío González Delgado Universidad de Cartagena
  • Kariana Moreno-Sader
  • Ildefonso Baldiris-Navarro

DOI:

https://doi.org/10.15665/rp.v19i1.2410

Resumen

This research is focused on the safety analysis of a preliminary design for a pilot-scale shrimp biorefinery through the Inherent Safety Index (ISI) method. This approach analyzes hazards associated with chemicals and process conditions covering several safety aspects. The chemical approach encompasses the heat released by the reactions, the chemical interaction between substances, their toxicity, explosiveness, flammability, and corrosivity while the process approach covers the amount of inventory handled, maximum working temperature and pressure, equipment safety, and the process structure. In all cases, subindexes were determined considering the worst possible scenario. The results show that the biorefinery is inherently safe by obtaining an ISI of 21 points, with chemical and process safety indices of 15 and 6, respectively. The indicators that stood out were the heat of reaction associated with the deacetylation of chitin as it is highly exothermic, and the flammability of acetone as the most dangerous substance in the process.

Citas

Secretaría de Agricultura y Desarrollo Rural. Gobierno de México. Nada se tira, todo se aprovecha: residuos pesqueros.

FAO. GLOBEFISH - Información e Análisis Comercial en Pesquerias. Se estima que 3 millones de toneladas de camarón entraron en el comercio internacional en 2018.

Kandra P, Challa MM, Kalangi Padma Jyothi H. Efficient use of shrimp waste: Present and future trends. Appl Microbiol Biotechnol 2012; 93: 17–29.

Mao X, Guo N, Sun J, et al. Comprehensive utilization of shrimp waste based on biotechnological methods: A review. J Clean Prod 2017; 143: 814–823.

Ibrahim HM, Salama MF, El-Banna HA. Shrimp’s waste: Chemical composition, nutritional value and utilization. Nahrung - Food 1999; 43: 418–423.

IEA Bioenergy. Task42 Biorefining. Sustainable and synergetic processing of biomass into marketable food & feed ingredients, products (chemicals, materials) and energy (fuels, power, heat). 2014.

Palmeros Parada M, Osseweijer P, Posada Duque J. Sustainable biorefineries, an analysis of practices for incorporating sustainability in biorefinery design. Ind Crops Prod 2016; 1–19.

Kemp R, Martens P. Sustainable development: how to manage something that is subjective and never can be achieved? Sustain Sci Pract Policy 2007; 3: 5–14.

Li X, Zanwar A, Jayswal A, et al. Incorporating exergy analysis and inherent safety analysis for sustainability assessment of biofuels. Ind Eng Chem Res 2011; 50: 2981–2993.

Kidam K, Hassim MH, Hurme M. Enhancement of Inherent Safety in Chemical Industry. In: 3rd International Conference on Safety & Environment in Process Industry. 2008.

Rathnayaka S, Khan F, Amyotte P. Risk-based process plant design considering inherent safety. Saf Sci 2014; 70: 438–464.

Song D, Sup Yoon E, Jang N. A framework and method for the assessment of inherent safety to enhance sustainability in conceptual chemical process design. J Loss Prev Process Ind 2018; 54: 10–17.

Meramo-Hurtado SI, Ojeda KA, Sanchez-Tuiran E. Environmental and Safety Assessments of Industrial Production of Levulinic Acid via Acid-Catalyzed Dehydration. ACS Omega 2019; 4: 22302–22312.

Meramo-Hurtado SI, Sanchez-Tuiran E, Ponce-Ortega JM, et al. Synthesis and Sustainability Evaluation of a Lignocellulosic Multifeedstock Biorefinery Considering Technical Performance Indicators. ACS Omega 2020; 5: 9259–9275.

Heikkilä A-M. Inherent safety in process plant design: An index-based approach. Technical Research Centre of Finland, 1999.

Abedi P, Shahriari M. Inherent safety evaluation in process plants - A comparison of methodologies. Cent Eur J Chem 2005; 3: 756–779.

González B. Producción local de camarón completó cuatro años al alza, aumentó de 21% comparado con 2017.

Díaz Rengifo PM. Utilización del Metabisulfito de Sodio como preservante en las camaroneras. Universidad Agraria del Ecuador, 2009.

Bonfante-Alvarez H, De Avila-Montiel G, Herrera-Barros A, et al. Evaluation of five chitosan production routes with astaxanthin recovery from shrimp exoskeletons. Chem Eng Trans 2018; 70: 1969–1974.

Meramo-Hurtado S, Alarcón-Suesca C, González-Delgado ÁD. Exergetic sensibility analysis and environmental evaluation of chitosan production from shrimp exoskeleton in Colombia. J Clean Prod; 248. Epub ahead of print 2020. DOI: 10.1016/j.jclepro.2019.119285.

Hossain MS, Iqbal A. Production and characterization of chitosan from shrimp waste. J Bangladesh Agril Univ 2014; 12: 153–160.

Trung TS, Phuong PTD. Bioactive compounds from by-products of shrimp processing industry in Vietnam. J Food Drug Anal 2012; 20: 194–197.

Instituto Nacional de Seguridad e Higiene en el Trabajo. Seguridad inherente: rutas de síntesis y diseño de procesos. Notas Técnicas de Prevención 2016; 1–6.

Descargas

Publicado

2021-02-17

Número

Sección

Articles