Reduction of Turbidity in Waters Using Cassava Starch as a Natural Coagulant


  • Angel Villabona-Ortíz Universidad de Cartagena
  • Candelaria Tejada Tovar Universidad de Cartagena
  • Marta Millan-Anibal Universidad de Cartagena
  • Clemente Granados Conde Universidad de Cartagena
  • Rodrigo Ortega Toro Universidad de Cartagena



Currently, the purification of raw water is relevant due to its scarcity in some regions of the world. The objective of this work was to reduce the turbidity of raw water by using cassava starch as a natural coagulant. Starch was extracted from cassava for the coagulation-flocculation tests that were carried out using a response surface type experimental design. The response variables were turbidity, colour and pH, the intermediate variables being the initial concentration of the sample, speed and time of centrifugation, cooling time, stirring speed and coagulant concentration. It was established that by adding 250 mg/L of coagulant and with a speed of 40 rpm, a higher percentage of turbidity elimination is achieved. Similarly, starch does not add or remove colour to raw water samples, being within the range used and considered acceptable for use following Decree 1575 of 2007 for drinking water. Under the conditions established during the jar test, the turbidity removal percentages were higher than 70%. Therefore, cassava starch could be used as a natural coagulant.


S. Y. Choy et al., “Starch-based flocculant outperformed aluminium sulfate hydrate and polyaluminium chloride through effective bridging for harvesting acicular microalga Ankistrodesmus,” Algal Res., vol. 29, no. 1, pp. 343–353, 2018, doi: 10.1016/j.algal.2017.11.001.

J. D. dos Santos, M. T. Veit, P. T. Juchen, G. da Cunha Gonçalves, S. M. Palácio, and M. Fagundes-Klen, “Use of different coagulants for cassava processing wastewater treatment,” J. Environ. Chem. Eng., vol. 6, no. 2, pp. 1821–1827, 2018, doi: 10.1016/j.jece.2018.02.039.

L. Zhou, H. Zhou, and X. Yang, “Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment,” Sep. Purif. Technol., vol. 210, pp. 93–99, 2019, doi: 10.1016/j.seppur.2018.07.089.

S. Jiménez, M. M. Micó, M. Arnaldos, F. Medina, and S. Contreras, “State of the art of produced water treatment,” Chemosphere, vol. 192, pp. 186–208, 2018, doi: 10.1016/j.chemosphere.2017.10.139.

S. Y. Choy et al., “Separation of Chlorella biomass from culture medium by flocculation with rice starch,” Algal Res., vol. 30, no. 1, pp. 162–172, 2018, doi: 10.1016/j.algal.2017.11.012.

S. Y. Choy, K. N. Prasad, T. Y. Wu, M. E. Raghunandan, and R. N. Ramanan, “Performance of conventional starches as natural coagulants for turbidity removal,” Ecol. Eng., vol. 94, no. 1, pp. 352–364, 2016, doi: 10.1016/j.ecoleng.2016.05.082.

M. Saleem and R. T. Bachmann, “A contemporary review on plant-based coagulants for applications in water treatment,” J. Ind. Eng. Chem., vol. 72, no. 1, pp. 281–297, 2019, doi: 10.1016/j.jiec.2018.12.029.

S. M. Asharuddin, N. Othman, N. S. M. Zin, H. A. Tajarudin, and M. F. Md Din, “Flocculation and antibacterial performance of dual coagulant system of modified cassava peel starch and alum,” J. Water Process Eng., vol. 30, no. 1, pp. 100–113, 2019, doi: 10.1016/j.jwpe.2019.100888.

Y. Sohrabi, S. Rahimi, A. H. Nafez, and N. Mirzaei, “Chemical Coagulation Efficiency in Removal of Water Turbidity,” vol. 10, no. 3, pp. 188–194, 2018.

H. Salehizadeh, N. Yan, and R. Farnood, “Recent advances in polysaccharide bio-based flocculants,” Biotechnol. Adv., vol. 36, no. 1, pp. 92–119, 2018, doi: 10.1016/j.biotechadv.2017.10.002.

W. I. S. Wan Kamar, H. Abdul Aziz, and S. F. Ramli, “Removal of Suspended Solids, Chemical Oxygen Demand and Color from Domestic Wastewater Using Sago Starch as Coagulant,” Appl. Mech. Mater., vol. 802, pp. 519–524, 2015, doi: 10.4028/

J. Guo and C. Chen, “Sludge conditioning using the composite of a bioflocculant and PAC for enhancement in dewaterability,” Chemosphere, vol. 185, pp. 277–283, 2017, doi: 10.1016/j.chemosphere.2017.06.111.

A. H. Amran, N. S. Zaidi, K. Muda, and L. W. Loan, “Effectiveness of natural coagulant in coagulation process: A review,” Int. J. Eng. Technol., vol. 7, no. 3.9, pp. 34–37, 2018, doi: 10.14419/ijet.v7i3.9.15269.

A. Campbell, “The potential role of aluminium in Alzheimer’s disease,” Nephrol. Dial. Transplant., vol. 17, no. suppl_2, pp. 17–20, Mar. 2002.

R. Yang, H. Li, M. Huang, H. Yang, and A. Li, “A review on chitosan-based flocculants and their applications in water treatment,” Water Res., vol. 95, pp. 59–89, 2016, doi: 10.1016/j.watres.2016.02.068.

H. Wu, Z. Liu, H. Yang, and A. Li, “Evaluation of chain architectures and charge properties of various starch-based fl occulants for fl occulation of humic acid from water,” Water Res., vol. 96, pp. 126–135, 2016, doi: 10.1016/j.watres.2016.03.055.

M. G. Antov et al., “Common oak (Quercus robur) acorn as a source of natural coagulants for water turbidity removal,” Ind. Crops Prod., vol. 117, pp. 340–346, 2018, doi: 10.1016/j.indcrop.2018.03.022.

F. P. Camacho, V. S. Sousa, R. Bergamasco, and M. Ribau Teixeira, “The use of Moringa oleifera as a natural coagulant in surface water treatment,” Chem. Eng. J., 2017, doi: 10.1016/j.cej.2016.12.031.

B. I. Gandiwa, L. B. Moyo, S. Ncube, T. A. Mamvura, L. L. Mguni, and N. Hlabangana, “Optimisation of using a blend of plant based natural and synthetic coagulants for water treatment: (Moringa Oleifera-Cactus Opuntia-alum blend),” South African J. Chem. Eng., vol. 34, pp. 158–164, 2020, doi: 10.1016/j.sajce.2020.07.005.

N. Al-Saati et al., “Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study,” J. Appl. Sport Psychol., vol. 150, pp. 406–412, 2019.

J. D. dos Santos, M. T. Veit, P. T. Juchen, G. da Cunha Gonçalves, S. M. Palácio, and M. Fagundes-Klen, “Use of different coagulants for cassava processing wastewater treatment,” J. Environ. Chem. Eng., vol. 6, no. 2, pp. 1821–1827, 2018, doi:

K. X. Rodríguez-Soto, N. Y. Piñeros-Castro, and R. Ortega-Toro, “Laminated composites reinforced with chemically modified sheets-stalk of Musa cavendish,” Rev. Mex. Ing. Química, vol. 8, no. 3, pp. 749–758, 2019.

A. A. Almario, J. M. Mendoza-Fandiño, and P. L. Arrieta-Torres, “Evaluation of elaboration parameters of a solid biopolymer electrolyte of cassava starch on their performance in an electrochemical accumulator,” Rev. Mex. Ing. Química, vol. 18, no. 3, pp. 1203–1210, 2019.

J. A. Salcedo-Mendoza, J. G., Rodríguez-Lora, M. C., & Figueroa-Flórez, “Efecto de la acetilación en las propiedades estructurales y funcionales de almidones de yuca (Manihot esculenta Crantz) y ñame (Dioscorea alata cv. Diamante 22,” Rev. Mex. Ing. Química, vol. 15, no. 3, pp. 787–796, 2016.

E. A. Chávez-Salazar, L. A. Bello-Pérez, E. Agama-Acevedo, F. J. Castellanos-Galeano, and C. I. Alvarez-Barreto, “Isolation and partial characterization of starch from banana cultivars grown in Colombia,” Int. J. Biol. Macromol., vol. 98, pp. 240–246, 2017, doi: 10.1016/j.ijbiomac.2017.01.024.

A. Ashri, M. S. M. Yusof, M. S. Jamil, A. Abdullah, S. F. M. Yusoff, and M. M. Nasir, “Physicochemical characterization of starch extracted from Malaysian wild yam (Dioscorea hispida Dennst.),” Emirates J. Food Agric., vol. 26, no. 8, pp. 652–658, 2014, doi: 10.9755/ejfa.v26i8.17098.

B. C. Maniglia and D. R. Tapia-Blácido, “Isolation and characterization of starch from babassu mesocarp,” Food Hydrocoll., vol. 55, pp. 47–55, 2016, doi: 10.1016/j.foodhyd.2015.11.001.

J. Jairo, F. Díaz, S. B. Roa, A. María, and E. Tordecilla, “Eficiencia de la semilla Moringa Oleífera como coagulante natural para la remoción de la turbidez del río Sinú,” Prod. + Limpia, vol. 9, no. 1, pp. 9–22, 2014, [Online]. Available:

S. Usefi, M. Asadi-Ghalhari, H. Izanloo, A. R. Yari, and R. Mostafaloo, “The Performance of Starch as a Natural Coagulant for Turbidity Removal from Wastewater in Stone Cutting Industry,” Arch. Hyg. Sci., vol. 8, no. 1, pp. 17–26, 2019, doi: 10.29252/archhygsci.8.1.17.

T. C. Shan, M. Al Matar, E. A. Makky, and E. N. Ali, “The use of Moringa oleifera seed as a natural coagulant for wastewater treatment and heavy metals removal,” Appl. Water Sci., vol. 7, pp. 1369–1376, 2017, doi: 10.1007/s13201-016-0499-8.

D. V. Kukić, M. B. Šćiban, J. M. Prodanović, A. N. Tepić, and M. A. Vasić, “Extracts of fava bean (Vicia faba L.) seeds as natural coagulants,” Ecol. Eng., vol. 84, pp. 229–232, 2015, doi: 10.1016/j.ecoleng.2015.09.008.

C. M. D. Paredes, M. M. H. Carranza, J. I. F. Albornoz, R. A. P. Salazar, and N. F. A. Jamanca, “Efectividad de especies naturales como ayudantes de Coagulación , para la clarificación de aguas turbias en épocas de avenidas en caseríos y centros poblados de Huaraz y Callejón de Huaylas Effectiveness of natural species Coagulation as assistants for cl,” Aporte Santiaguino, vol. 11, no. 2, pp. 299–310, 2018.

R. Solis Silvan, J. R. Laines Canepa, and J. R. Hernández Barajas, “Mezclas con potencial coagulante para clarificar aguas superficiales,” Rev. Int. Contam. Ambient., vol. 28, no. 3, pp. 229–236, 2012.

C. Lorena Del et al., “Efectividad de un coagulante extraído de Stenocereus griseus (Haw.) Buxb. en la potabilización del agua,” Rev. Tec. la Fac. Ing. Univ. del Zulia, 2011.

L. Montes Gazabón, R. Olivero Verbel, and I. Mercado Martínez, “Remoción de la turbidez del agua del río Magdalena usando el mucílago del nopal Opuntia ficus-indica,” Prod. + Limpia, vol. 8, no. 1, pp. 19–27, 2013.

M. S. Yusoff, H. A. Aziz, M. F. M. A. Zamri, F. Suja’, A. Z. Abdullah, and N. E. A. Basri, “Floc behavior and removal mechanisms of cross-linked Durio zibethinus seed starch as a natural flocculant for landfill leachate coagulation- flocculation treatment,” Waste Manag., vol. 74, pp. 362–372, 2018, doi: 10.1016/j.wasman.2018.01.016.

H. Wei, J. Ren, A. Li, and H. Yang, “Sludge dewaterability of a starch-based flocculant and its combined usage with ferric chloride,” Chem. Eng. J., vol. 349, no. 1, pp. 737–747, 2018, doi: 10.1016/j.cej.2018.05.151.

N. Fuentes Molina, E. J. Molina Rodríguez, and C. P. Ariza, “Coagulantes naturales en sistemas de flujo continuo, como sustituto del Al2(SO4)3 para clarificación de aguas,” Prod. + Limpia, vol. 11, no. 2, pp. 41–54, 2016, doi: 10.22507/pml.v11n2a4.