Variables influyentes en el secado discontinuo del carbón asistido con microondas

Autores/as

  • María Alvarado Universidad del Atlántico

DOI:

https://doi.org/10.15665/rp.v10i2.231

Palabras clave:

Carbón, Microondas, Secado, Humedad

Resumen

En este estudio se evalúa la influencia del tamaño de partícula, el tipo de carbón, el tiempo de operación y la
energía microondas suministrada como variables influyentes en el proceso de secado del carbón mineral. Posteriormente,
se compara el secado con microondas con el secado térmico del carbón en estufa convencional. Los
resultados evidencian que con el secado en horno microonda se remueve hasta el 50% de la humedad contenida
en el carbón en el 10% del tiempo requerido por la técnica convencional. Se encontró que el proceso microondas
no afecta las propiedades de Índice de Hard Grove, poder calorífico y contenido de ceniza del carbón bajo las
condiciones empleadas en esta investigación.

Citas

Bélanger, J. M., Jocelyn Paré, J.R., Poon, O., Fairbridge,

C., Ng, S., Mutyala. S., Hawkins, R., Remarks on Various

Applications of Microwave Energy, J. Microw. Power Electromagn.

Energy, 42(4), 24-44, 2008.

Mutyala, S., Fairbridge, C., Jocelyn Paré, J.R., Bélanger,

J.M., Ng, S., Hawkins, R., Microwave applications to oil

sands and petroleum: A review, Fuel Process. Technol, 91(2),

-135, 2010.

Lester, E., and Kingman, S., The effect of microwave

pre-heating on five different coals, Fuel 83,1941–1947, 2004.

Seehra, M.S., Kalra, A., Manivannan, A., Dewatering

of fine coal slurries by selective heating with microwaves,

Fuel, 86(5-6), 829–834, 2007.

Wilson, J.W., and Ding, Y., Ultra fine coal single-stage

dewatering and briquetting process, Society for Mining, Metallurgy

and Exploration Transactions, 298, 1921-1924, 1994.

Yang, J., Wang, X.H., Parekh, B.K., Improved techniques

for dewatering of fine clean coal, Mineral processing:

Recent Advances and future trends, 694-699, 1998.

Church, R.H., Webb, W.E., Salsman, J.B., Dielectric properties

of low-loss minerals; U.S. Bureau of Mines, Report

of Investigations. Report 9, 194, 1-13, 1988.

Beary, E.S., Comparison of microwave drying and conventional

drying techniques for reference materials, Anal.

Chem. 60, 742-746, 1988.

Metaxas, A.C., and Meredith, R.J., Industrial Microwave

Heating. Peter Peregrinus Ltd., London, UK. 1983.

Perkin, R.M., The heat and mass transfer characteristics

of boiling point drying using radio frequency and microwave

electromagnetic fields, Intl. J. of heat & mass transfer,

, 687-695. 1980.

Marland, S., Han, B., Merchant, A., Rowson, N. The

effect of microwave radiation on coal grindability, Fuel, 79,

-1288, 2000.

Menéndez, J.A., Arenillas, A., Fidalgo, B., Fernández,

Y., Zubizarreta, L., Calvo, E.G., Bermúdez, J.M., Microwave

heating processes involving carbon materials,

Fuel Process. Technol, 91, 1-8, 2010.

Méndez, U.O., Kharissova, O.V., Rodríguez, M.,

Synthesis and morphology of nanostructures via microwave

heating, Reviews on Advances Materials Science, 5,

-402, 2003.

Kharissova, O.V., Vertically aligned carbon nanotubes

fabricated by microwaves. Reviews on Advanced Materials

Science, 7, 50-54, 2004.

Fidalgo, B., Fernández, Y., Zubizarreta, L., Arenillas, A.,

Dominguez, A., Pis, J.J., Menéndez, J.A., Growth of nanofilaments

on carbon based materials from microwave-assisted

decomposition of CH4. Appl. Surf. Sci., 254, 3553-3557, 2008.

Harris, A.T., Desphpande, S., Kefeng, X., Synthesis of

graphitic carbon particle chains at low temperature under

microwave irradiation, Mater. Lett., 63, 1390-1392, 2009.

Liu, Z., Guo, B., Hong, L, Lim, T.H., Microwave heated

polyol synthesis of carbon-supported PtSn nanoparticles

for methanol electrooxidation, Electrochem. Commun.,

, 83-90, 2006.

Zubizarreta, L., Arenillas, A., Menéndez, J.A., Pis,

J.J., Pirard, J.P., Job, N., Microwave drying as an effective

method to obtain porous carbon xerogels. J. Non-Cryst. Solids.,

, 4024-4026, 2008.

Lee, H.I., Kim, J.H., Joo, S.H., Chang, H., Seung, D.,

Joo, O.S., Suh, D.J., Ahn, W.S., Pak, C., Kim, J.M., Ultrafast

production of ordered mesoporous carbons via microwave

irradiation, Carbon, 45,2851-2854, 2007.

Li, W., Peng, J., Zhng, L., Yang, K., Xia, H., Zhang, S.

et al., Preparation of activated carbon from coconut shell

chars in pilot-scale microwave heating equipment at 60

kW, Waste Manage, 29,756-760, 2009.

Yuen, F.K., Hameed, B.H., Recent developments in

the preparation and regeneration of activated carbons by

microwaves,

Adv. Colloid Interface Sci., 149, 19-27, 2009.

Menéndez, J.A., Menéndez, E.M., Iglesias, M.J., García,

A., Pis, J.J., Modification of the surface chemistry of active

carbons by means of microwave-induced treatments,

Carbon,

, 1115-1121, 1999.

Ania, C.O., Parra, J.B., Menéndez, J.A., Pis, J.J., Microwave-

assisted regeneration of activated carbons loaded

with pharmaceuticals, Water Res., 41, 3299-3306, 2007.

Cherbanski, R., Molga, E., Intensification of desorption

processes by use of microwaves – An overview of

possible applications and industrial perspectives, Chem.

Eng. Process., 48, 48-58, 2009.

Bradshaw, S.M., Van Wyk, E.J., De Swardt, J.B., Microwave

heating principles and the application to the regeneration

of granular activated carbon, J. S. Afr. Inst. Min.

Metall., 98, 201-210, 1998.

Uslu, T., Atalay, Ü., Microwave heating of coal for enhanced

magnetic removal of pyrite, Fuel Process. Technol.,

, 21-29, 2004.

Tahmasebi, A., et al., “Experimental study on microwave

drying of Chinese and Indonesian low-rank

coals,” Fuel Process. Technol., 92, 1821-1829, 2011.

Treybal. Operaciones de Transferencia de Masa.

Mc.Graw-Hill, 2a. Edición. México (1989).

Descargas

Número

Sección

Articles