A New Approach on Skull Stripping of Brain MRI based on Saliency Detection using Dictionary Learning and Sparse Coding
DOI:
https://doi.org/10.15665/rp.v17i2.2050Palabras clave:
Skull stripping, MRI, Saliency detection, Dictionary learning, Sparse codingResumen
In brain magnetic resonance images (brain MRI) analysis, for diagnosing certain brain conditions, it is necessary to quantify the brain tissue, which implies to separate the brain from extracranial or non-brain tissues through a process of isolation known as skull stripping. This is a non-trivial task since different types of tissues may have the same gray level, and during the separation process, some brain tissues could be removed. This paper presents a new solution approach for the skull stripping problem, based on saliency detection using dictionary learning and sparse coding, which can operate over T1 and T2 weighted axial brain MRI. Our method first subdivides the axial MRI into full overlapped patches and runs a dictionary learning over them for obtaining its sparse representation. Then, by analyzing the sparse coding matrix, we compute how many patches a dictionary atom affects to classify them as frequent or rare. Then, we calculate the saliency map of the axial MRI according to the composition of the image patches, i.e. an image patch is considered salient if it is mainly composed of frequent atoms, an atom is frequent whether it affects many patches. The non-salient pixels, corresponding to non-brain tissues, are eliminated from the MRI. Numerical results validate our methodCitas
J. V. Manjón, "Segmentación Robusta de Imágenes de RM cerebral," Universidad Politécnica de Valencia, Valencia - España, 2006.
P. Kalavathi and V. Surya Prasath, "Methods on Skull Stripping of MRI Head Scan Images—a Review," Journal of Digital Imaging, vol. 29, no. 3, p. 365–379, 2016.
C. Cecere, C. Corrado and R. Polikar, "Diagnostic Utility of EEG Based Biomarkers for Alzheimer’s Disease," in Annual Northeast Bioengineering Conference (NEBEC), Boston, USA, 2014.
B. S. Mahanand, S. Babu and S. Suresh, "Identification of imaging biomarkers responsible for Alzheimer's Disease using a McRBFN classifier," in International Conference on Cognitive Computing and Information Processing (CCIP), Noida, India, 2015.
K. Dillon, C. Vince and Y.-P. Wang, "A robust sparse-modeling framework for estimating schizophrenia biomarkers from fMRI," Journal of Neuroscience Methods, vol. 276, pp. 46-55, 2017.
E. M. Meisenzahl, N. Koutsouleris, R. Bottlender, J. J. M. Scheuerecker, S. J. Teipel, S. Holzinger, T. Frodl, U. Preuss, G. Schmitt, B. Burgermeister, M. Reiser, C. Born and H. J. Möller, "Structural brain alterations at different stages of schizophrenia: A voxel-based morphometric study," Schizophrenia Research, vol. 104, no. 1-3, pp. 44-60, 2008.
E. H. Aylward, "Change in MRI striatal volumes as a biomarker in preclinical Huntington’s disease," Brain Research Bulletin, vol. 72, p. 152–158, 2007.
A. Plerou, C. Bobori and P. Vlamos, "Molecular Basis of Huntington’s Disease and Brain Imaging Evidence," in IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Abu Dhabi, UAE, 2015.
L. Wang, Y. Chen, X. Pan, X. Hong and D. 0 Xia, "Level set segmentation of brain magnetic resonance images based on local gaussian distribution fitting energy," Journal of Neuroscience Methods, vol. 188, no. 2, p. 316–325, 2010.
S. Roy and P. Maji, "An accurate and robust skull stripping method for 3-D magnetic resonance brain images," Magnetic Resonance Imaging, vol. 54, pp. 46-57, 2018.
S. Roy, J. A. Butman and D. L. Pham, "Robust skull stripping using multiple MR image contrasts insensitive to pathology," NeuroImage, vol. 146, no. 1, pp. 132-147, 2017.
J. Kleesiek, G. Urban, A. Hubert, D. Schwarz, K. Maier-Hein, M. Bendszus and A. Biller, "Deep MRI brain extraction: A 3D convolutional neural network for skull stripping," NeuroImage, vol. 129, no. 1, pp. 460-469, 2016.
R. Shaswati and M. Pradipta, "A simple skull stripping algorithm for brain MRI," in Eighth International Conference on Advances in Pattern Recognition (ICAPR), Kolkata, India, 2015.
K. Somasundaram and P. Kalavathi, "Contour-based brain segmentation method for magnetic resonance imaging human head scans," Journal of Computer Assisted Tomography, vol. 37, no. 3, p. 353–368, 2013.
M. Brummer, R. Mersereau, R. Eisner and R. Lewine, "Automatic detection of brain contours in MRI data sets," IEEE Transactions on Medical Imaging, vol. 12, no. 2, pp. 153-166, 1993.
S. Roy and P. Maji, "A Simple Skull Stripping Algorithm for Brain MRI," in Eighth International Conference on Advances in Pattern Recognition (ICAPR), Kolkata, India, 2015.
J. Kleesiek, G. Urban, A. Hubert, D. Schwarz, K. Maier-Hein, M. Bendszus and A. Biller, "Deep MRI Brain Extraction: A 3D Convolutional Neural Network for Skull Stripping," NeuroImage, vol. 129, no. 1, pp. 460-469, 2016.
S. Goferman, L. Zelnik-Manor and A. Tal, "Context-Aware Saliency Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 10, pp. 1915 - 1926, 2012.
K. Guo and H.-T. Chen, "Learning sparse dictionaries for saliency detection," in Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), Hollywood, CA, USA, 2012.
N. Li, B. Sun and J. Yu, "A weighted sparse coding framework for saliency detection," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015.
J. Yang and M.-H. Yang, "Top-Down Visual Saliency via Joint CRF and Dictionary Learning," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 3, p. 576–588, 2017.
R. Cong, J. Lei, H. Fu, M.-M. Cheng, W. Lin and Q. Huang, "Review of Visual Saliency Detection with Comprehensive Information," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, pp. 1-19, 2018.
W. Zhu, S. Liang, W. Yichen and J. Sun, "Saliency Optimization from Robust Background Detection," Columbus, OH, USA, 2014.
I. Rish, "Functional MRI Analysis with Sparse Models," in Joint European Conference on Machine Learning and Knowledge Discovery in Databases - ECML PKDD 2013, Prague, 2013.
M. Liu, D. Zhang, D. Shen and T. A. D. N. Initiative, "Ensemble sparse classification of Alzheimer's disease," NeuroImage, vol. 60, pp. 1106-1116, 2012.
C. Bao and H. Ji, "Dictionary Learning for Sparse Coding: Algorithms and Convergence Analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 7, pp. 1356 - 1369, 2016.
M. Aharon, M. Elad and A. M. Bruckstein, "The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation," IEEE Transactions On Signal Processing, vol. 54, no. 11, pp. 4311-4322, 2006.
M. Aharon, M. Elad and A. M. Bruckstein, "On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them," Journal of Linear Algebra and Applications, vol. 416, pp. 48-67, 2006.
C. M. Institute and I. N. D.-S. I. (INDI), "1000 Functional Connectomes Project," Child Mind Institute & International Neuroimaging Data-Sharing Initiative (INDI), 2017. [Online]. Available: http://fcon_1000.projects.nitrc.org/. [Accessed 20 8
.
MIDAS, "Designed Database of MR Brain Images of Healthy Volunteers," MIDAS, 2010. [Online]. Available: http://insight-journal.org/midas/community/view/21. [Accessed 7 10 2018].
S. M. Smith, "Fast robust automated brain extraction," Human Brain Mapping, vol. 17, no. 3, pp. 143-155, 2002.
D. W. Shattuck and R. M. Leahy, "BrainSuite: an automated cortical surface identification tool," Medical Image Analysis, vol. 6, no. 2, pp. 129-142, 2002.
J. E. Iglesias, C. Y. Liu and P. M. T. Z. Thompson, "Robust brain extraction across datasets and comparison with publicly available methods," IEEE Transactions on Medical Imaging, vol. 30, no. 9, pp. 1617-1634, 2011.
Descargas
Publicado
Número
Sección
Licencia
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as ceden los derechos de autor y dan a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a publicar su trabajo en Internet (por ejemplo en páginas institucionales o personales) antes y durante el proceso de revisión y publicación, ya que puede conducir a intercambios productivos y a una mayor y más rápida difusión del trabajo publicado (vea The Effect of Open Access).
Instrucciones para el llenado de la Certificación de Originalidad y la Cesión de Derechos de Autor.
- Haga click aquí y baje el formulario de Certificación de Originalidad y la Cesión de Derechos de Autor.
- En cada uno de los campos para rellenar haga click y complete lo correspondiente.
- Una vez llenos los campos, copie al final su firma escaneada o firma digital. Favor ajustar el tamaño de la firma en el formulario.
- Finalmente, lo puede guardar como pdf y enviarlo a través de la palataforma OJS, como archivo complementario.
Si tiene dudas contáctenos, por favor.