Interacción de derivados de Fenilhidrazona con aniones: efecto de los sustituyentes en el grupo fenilo

Glenys Ramírez-Valbuena
Marielis Chirinos-Iguarán
Katerin Boscán-Meleán
Rodolfo Izquierdo
Mayamaru Guerra
Jelen Restrepo


DOI: http://dx.doi.org/10.15665/rp.v17i1.1670

Resumen


Se estudió la interacción de 16 derivados fenilhidrazonas con los aniones AcO-, H2PO4-, F- y Cl- mediante espectroscopía UV-Visible. Se sintetizaron los derivados 2-fenilhidracina sin nitro, 2-nitro, 4 nitro y 2,4-dinitro de 4-hidroxi (1-4), 4-metoxi (5-8), 4-dimetilamino bencilideno (9-12) y piridina (13-16). Se evaluó la relación entre la estructura de las hidrazonas y la constante de asociación. La estequiometría de los complejos se determinó por el método de variaciones continuas y la constante de asociación se determinó por el método de ajuste no lineal. Los derivados 4, 8, 12 y 15 presentaron interacción con AcO-;  esto se evidencia por el corrimiento batocrómico de la banda de absorción de la hidrazona. Sin embargo, los derivados 12 y 15 no se ajustaron a las ecuaciones aplicadas en este trabajo.  Los resultados para los derivados 4 y 8 sugieren la formación de un complejo del tipo receptor:huesped con estequiometria 1:2 y constantes de [K1 = 1,758 (±0,026)×104 and K2 = 2,310 (±0,033)×104] mol-1∙dm3 and [K1 = 4,703 (±0,073)×104 and K2 = 2,000 (0,066)×104] mol-1∙dm3 respectivamente.


Palabras clave


fenilhidrazona, sensor colorimétrico, Job Plot, complejo receptor:huésped

Texto completo:

PDF

Referencias


S.-J. Hong, J. Yoo, S.-D. Jeong, and C.-H. Lee, “Convenient synthesis of tripodal-pyrrole receptor and anion binding properties,” J. Incl. Phenom. Macrocycl. Chem., vol. 66, no. 1–2, pp. 209–212, Feb. 2010.

X. J. Li, X. F. Shang, L. L. Liu, N. K. Xi, J. L. Zhang, and X. F. Xu, “Anion recognition based on phenolic hydroxyl group in competitive media,” J. Incl. Phenom. Macrocycl. Chem., vol. 73, no. 1–4, pp. 185–192, Aug. 2012.

Y. H. Qiao, H. Lin, J. Shao, and H. K. Lin, “A novel acetate selective UV-Vis chemosensor containing a tripodal benzaldehydic-phenylhydrazone,” Chinese J. Chem., vol. 26, no. 4, pp. 611–614, Apr. 2008.

H. Su, H. Lin, Z. S. Cai, and H. Lin, “Anion receptor based on thiourea: Via hydrogen bonding interaction and efficient deprotonation,” J. Incl. Phenom. Macrocycl. Chem., vol. 67, no. 1–2, pp. 183–189, Jun. 2010.

J. Shao, Y. Qiao, H. Lin, and H. Lin, “A C3-symmetric colorimetric anion sensor bearing hydrazone groups as binding sites,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 71, no. 5, pp. 1736–1740, Jan. 2009.

Y. Zhang, Q. Li, Q. Zhang, Q. Lin, C. Cao, M. Liu, and T. Wei, “Novel hydrazone-based tripodal sensors: Single selective colorimetric chemosensor for acetate in aqueous solution,” Chinese J. Chem., vol. 29, no. 7, pp. 1529–1534, Jul. 2011.

W. Huang, Z. Chen, H. Lin, and H. Lin, “A novel thiourea-hydrazone-based switch-on fluorescent chemosensor for acetate,” J. Lumin., vol. 131, no. 4, pp. 592–596, Apr. 2011.

F. Y. Wu, Z. Li, Z. C. Wen, N. Zhou, Y. F. Zhao, and Y. B. Jiang, “A novel thiourea-based dual fluorescent anion receptor with a rigid hydrazine spacer,” Org. Lett., vol. 4, no. 19, pp. 3203–3205, 2002.

M. W. Wong, H. Xie, and S. T. Kwa, “Anion recognition by azophenol thiourea-based chromogenic sensors: A combined DFT and molecular dynamics investigation,” J. Mol. Model., vol. 19, no. 1, pp. 205–213, Jan. 2013.

X.-F. Shang and X.-F. Xu, “The anion recognition properties of hydrazone derivatives containing anthracene,” Biosystems, vol. 96, no. 2, pp. 165–171, May 2009.

Y. H. Qiao, H. Lin, and H. K. Lin, “A novel colorimetric sensor for anions recognition based on disubstituted phenylhydrazone,” J. Incl. Phenom. Macrocycl. Chem., vol. 59, no. 3–4, pp. 211–215, Nov. 2007.

V. Mohan, A. Nijamudheen, S. K. Das, P. K. Sahu, U. P. Kar, A. Rahaman, and M. Sarkar, “Ion interactions with a new ditopic naphthalimide-based receptor: A photophysical, NMR and theoretical (DFT) study,” ChemPhysChem, vol. 13, no. 17, pp. 3882–3892, Dec. 2012.

H. Tavallali, G. Deilamy Rad, A. Parhami, and E. Abbasiyan, “A new application of bromopyrogallol red as a selective and sensitive competition assay for recognition and determination of acetate anion in DMSO/water media,” Dye. Pigment., vol. 94, no. 3, pp. 541–547, Sep. 2012.

Y. H. Qiao, H. Lin, and H. K. Lin, “A novel colorimetric sensor for anions recognition based on disubstituted phenylhydrazone,” J. Incl. Phenom. Macrocycl. Chem., vol. 59, no. 3–4, pp. 211–215, Nov. 2007.

D. Saravanakumar, S. Devaraj, S. Iyyampillai, K. Mohandoss, and M. Kandaswamy, “Schiff’s base phenol-hydrazone derivatives as colorimetric chemosensors for fluoride ions,” Tetrahedron Lett., vol. 49, no. 1, pp. 127–132, Jan. 2008.

J. Shao, H. Lin, M. Yu, Z. Cai, and H. Lin, “Study on acetate ion recognition and sensing in aqueous media using a novel and simple colorimetric sensor and its analytical application,” Talanta, vol. 75, no. 2, pp. 551–555, Apr. 2008.

Y. Li, J. Li, H. Lin, J. Shao, Z.-S. Cai, and H. Lin, “A novel colorimetric receptor responding AcO− anions based on an azo derivative in DMSO and DMSO/water solution,” J. Lumin., vol. 130, no. 3, pp. 466–472, Mar. 2010.

K. K. Upadhyay, A. Kumar, R. K. Mishra, T. M. Fyles, S. Upadhyay, and K. Thapliyal, “Reversible colorimetric switching of thiophene hydrazone based on complementary IMP/INH logic functions,” New J. Chem., vol. 34, no. 9, pp. 1862–1866, Sep. 2010.

W. Huang, Y. Li, H. Lin, and H. Lin, “Colorimetric recognition of acetate anions in aqueous solution using charge neutral azo derivatives,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 86, pp. 437–442, Feb. 2012.

İ. Sıdır, Y. Gülseven Sıdır, F. Demiray, and H. Berber, “Estimation of ground and excited states dipole moments of α-hydroxy phenyl hydrazone derivatives: Experimental and quantum chemical methods,” J. Mol. Liq., vol. 197, pp. 386–394, Sep. 2014.

H. A. Benesi and J. H. Hildebrand, “A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons,” J. Am. Chem. Soc., vol. 71, no. 8, pp. 2703–2707, Aug. 1949.

P. Thordarson, “Determining association constants from titration experiments in supramolecular chemistry,” Chem. Soc. Rev., vol. 40, no. 3, pp. 1305–1323, Feb. 2011.

Y. J. Alvarado, A. Ballestas-Barrientos, N. Cubillán, M. Morales-Toyo, J. Restrepo, and G. Ferrer-Amado, “Preferential solvation of thiophene and furan-2-carboxaldehyde phenylhydrazone derivatives in DMSO-water and DMSO-n-octanol mixtures,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 103, pp. 361–367, 2013.

V. K. Gupta, A. K. Singh, and N. Gupta, “Colorimetric sensor for cyanide and acetate ion using novel biologically active hydrazones,” Sensors Actuators, B Chem., vol. 204, pp. 125–135, Dec. 2014.

A. Ebrahimi, S. M. Habibi-Khorasani, and M. Jahantab, “Additivity of substituent effects on the proton affinity and gas-phase basicity of pyridines,” Comput. Theor. Chem., vol. 966, no. 1–3, pp. 31–37, Jun. 2011.

V. M. S. Gil and N. C. Oliveira, “On the use of the method of continuous variations,” J. Chem. Educ., vol. 67, no. 6, pp. 473–478, Jun. 1990.

Y. Wang, H. Lin, J. Shao, Z. S. Cai, and H. K. Lin, “A phenylhydrazone-based indole receptor for sensing acetate,” Talanta, vol. 74, no. 5, pp. 1122–1125, Feb. 2008.

Y. H. Kim, M. G. Choi, H. G. Im, S. Ahn, I. W. Shim, and S.-K. Chang, “Chromogenic signalling of water content in organic solvents by hydrazone–acetate complexes,” Dye. Pigment., vol. 92, no. 3, pp. 1199–1203, Mar. 2012.

Y.-M. Zhang, Q. Lin, T.-B. Wei, D.-D. Wang, H. Yao, and Y.-L. Wang, “Simple colorimetric sensors with high selectivity for acetate and chloride in aqueous solution,” Sensors Actuators B Chem., vol. 137, no. 2, pp. 447–455, Apr. 2009.


Enlaces refback

  • No hay ningún enlace refback.


Licencia Creative Commons
Este trabajo esta licenciado bajo una Licencia Internacional Creative Commons Atribución-NoComercial-SinDerivados 4.0.

 

ISSN : 1692-8261 Versión impresión
ISSN : 2216-1368 Versión Web

RedesRepositorio UACRedes Sociales
 


Licenciada bajo:


Indexada en: