Methylene blue degradation under visible irradiation on TiO2 electrodes sensitized by dye chlorophyll extract from Spinacia Olera/Degradación de azul de metileno bajo irradiación visible sobre electrodos de TiO2 sensibilizados con pigmentos de clorofila..

Autores/as

  • William Andres Vallejo Universidad del Atlántico
  • Carlos Diaz Universidad del Atlántico
  • Maria Alvis Universidad del Atlántico
  • Alvaro Cantillo Universidad del Atlántico
  • Catalina Fajardo Universidad del Atlántico

DOI:

https://doi.org/10.15665/rp.v16i2.1455

Palabras clave:

Fotocatálisis, TiO2, Sensibilización, Clorofila.

Resumen

En este trabajo se evaluó la actividad fotocatalítica de pigmentos fotosintéticos (clorofila), adsorbidos sobre superficie de dióxido de titanio en presencia de luz visible, los pigmentos fueron extraídos por maceración en frío,  a partir de plantas de espinaca (Spinacia Olerace), la fabricación de las películas de TiO2 fue realizada utilizando la técnica de Doctor Blade, la cuantificación de los pigmentos se realizó mediante el método tricromático según la norma estandarizada para la cuantificación de clorofila 10200 H. Los pigmentos fijados sobre la superficie de TiO2 aumentaron la respuesta de este material en el rango visible, finalmente se evaluó la capacidad  fotocatalítica del TiO2 modificado bajo irradiación visible,  la degradación del azul de metileno se evaluó durante 140 minutos, obteniendo un porcentaje de degradación de los electrodos modificados fue superior al de los electrodos de TIO2 sin modificar.

Citas

V. Binas, D. Venieri, D. Kotzias, G. Kiriakidis. “Modified TiO2 based photocatalysts for improved air and health quality”, J Materiomics, 3, 3-16, 2017.

M.E. Borges, M. Sierra, E. Cuevas, R.D. Garcia, P. Esparza, “Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment”, Solar Energy, 135, 527–535, 2016.

K. Nakataa, A. Fujishima, “TiO2 photocatalysis: Design and applications”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 169–189, 2012.

C. Mariena, T. Cottineaua, D. Roberta, P. Drogui, “TiO2 Nanotube arrays: Influence of tube length on the photocatalytic degradation of Paraquat”, Applied Catalysis B: Environmental, 194, 1–6, 2016.

H. Liang, Z. Jia, H. Zhang, X. Wanga, J. Wang, “Photocatalysis oxidation activity regulation of Ag/TiO2 composites evaluated by the selective oxidation of Rhodamine B”, Applied Surface Science, 422, 1–10, 2017.

A. Sasania, A. Baktashb, K. Mirabbaszadehc, B. Khoshnevisan, “Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface”, Applied Surface Science, 384, 298–303, 2016.

K. Ubonchonlakate, L. Sikonga, F. Saito, “Photocatalytic disinfection of P.aeruginosa bacterial Ag-doped TiO2 film” Procedia Engineering, 32, 656-662, 2012.

J. Vargas, S. Coste, A. Garciía, F. Romo, A. Kassiba, “Effects of metal doping (Cu, Ag, Eu) on the electronic and optical behavior of nanostructured TiO2”, Journal of Alloys and Compounds, 710, 355-363, 2017.

M. R. Delsouz, M. S. Shafeeyan, A. A. Abdul, W. M. Daud, “Application of doped photocatalysts for organic pollutant degradation - A review, Journal of Environmental Management, 198, 78-94, 2017.

B. Appavu, S. Thiripuranthagan, “Visible active N, S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes”, Journal of Photochemistry and Photobiology A: Chemistry 340, 146–156, 2017.

Jing Cheng,a Yuting Wang,a Yan Xing,a Muhammad Shahida , Wei Pan, “A stable and highly efficient visible-light photocatalyst of TiO2 and heterogeneous carbon core–shell nanofibers”, RSC Advances, 7, 15330-15336, 2017.

H. Wang, L. Qiao, H. Xu, Y. Lin, Y. Shen, C. Nan, “Anisotropy of Photocatalytic Properties in Nanostructured Photocatalysts”, Soft Nanoscience Letters, 6, 11-30. 2016.

P. Chowdhury, H. Gomaa, A. K. Ray, “Dye-Sensitized Photocatalyst: A Breakthrough in Green Energy and Environmental Detoxification Sustainable Nanotechnology and the Environment: Advances and Achievements”, ACS Symposium Series, 1124, 2013, 231–266

X. Zhang, T. Peng, S. Songa. “Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production”, J. Mater. Chem. A, 4, 2365-2402, 2016.

P. Chowdhury, G. Malekshoar, A. K. Ray, “Dye-Sensitized Photocatalytic Water Splitting and Sacrificial Hydrogen Generation: Current Status and Future Prospects” Inorganics, 5, 34-41. 2017.

Thomas J. L., Allen N. S. “The degradation of dyed cotton fabrics by the sensitised production of singlet oxygen via an aqueous soluble phthalocyanine dye”, Dyes and Pigments, 53, 195-217, 2002.

K, Krumova., G, Cosa, “Overview of Reactive Oxygen Species, in Singlet Oxygen: Applications in Biosciences and Nanosciences”, 1, 2016, 1, 1-21.

Cain, R.; Schmidt, S. “iodegradation of aromatic compounds by microalgae”. Fems. Microbiol. Let, 170:2, 291-300, 1999.

Granados G, Páez C. A., Martínez F., Páez-Mozo E, “Photocatalytic degradation of phenol on TiO2 and TiO2/Pt sensitized with metallophthalocyanines”, Catalysis Today, 107-108, 589-594, 2008.

S. Hörtensteiner, B. Kräutler, “Chlorophyll breakdown in higher plants. Biochimica et Biophysica Acta”, 1807, 977–988, 2011.

C. Yilmaz, V. Gökmen. Chlorophyll. Encyclopedia of Food and Health, 2016, 37-41

A. I. Kontos, A. G. Kontosa, D. S. Tsouklerisa, M. C. Bernard, N. Spyrellis, P.Falaras. “Nanostructured TiO2 films for DSSCS prepared by combining doctor-blade and sol–gel techniques”, J. Mater. Process. Technol. 196, 243–248, 2008.

APHA, AWWA, WEF, “Standard Methods for examination of water and wastewater”, American Public Health Association, 2012, 10-22.

S. Ghasemi, S. Rahimnejad, S. Rahman Setayesh, M. Hosseini, M.R. Gholami. “Kinetics Investigation of the Photocatalytic Degradation of Acid Blue 92 in Aqueous Solution Using Nanocrystalline TiO2 Prepared in an Ionic Liquid”, Prog. React. Kinet. Mech, 34, 55–76, 2009.

M. Arami, N. Yousefi Limaee, N.M. Mahmoodi, N. Salman, Tabrizi. “Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull”. J. Hazard. Mater. B, 135, 171–179, 2006.

J. F. Wintermans, A. De Mots, “Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol”, Biochim. Biophys, 109, 448 – 453, 1965.

W.P. Inskepp, P.R. Bloom. “Extinction Coefficients of Chlorophyll a and b in N,N-Dimethylformamide and 80% Acetone”, Plant Physiolgy, 77, 483-485, 1985.

J. Gregor, B. Marsálek, “Freshwater Phytoplankton Quantification by Chlorophyll A: A Comparative Study of in Vitro, in Vivo and in Situ Methods”. Water Res, 38, 517-522, 2004.

A. Pinto, E. Von Sperling, R. Moreira, “Chlorophyll-a determination via continuous measurement of plankton fluorescence:: methodology development”, Water Res, 35:16, 3977-3981, 2001

D. P. Sartory, J. Grobelaar, “Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis”, Hydrobiologia, 114:3, 177-187, 1984.

Descargas

Publicado

2018-07-14