Efecto catalítico del sulfato de zinc y el sulfato férrico en la pirólisis de la lignina/Catalytic effect of zinc sulfate and ferric sulfate on lignin pyrolysis

Autores/as

DOI:

https://doi.org/10.15665/rp.v16i1.1397

Palabras clave:

Catálisis, Lignina, Análisis termogravimétrico, Pirólisis

Resumen

Recurriendo al uso de la técnica análisis termogravimétrico, se estudió el efecto del sulfato de zinc y del sulfato férrico en el proceso de pirólisis de la lignina a tres velocidades de calentamiento. Se encontró que la pirólisis de la lignina pura se afecta muy poco con el cambio de las velocidad de calentamiento entre 10 y 100 °C/min, lo cual es inesperado por la naturaleza cinética de la pirólisis. La cinética de pirólisis de este componente de la biomasa fue estudiada teniendo en cuenta tres métodos de ajuste: el método diferencial con modelo de orden de reacción n, el método isoconversional y el modelo de distribución de energías de activación, DAEM. Los mejores ajustes, que permitieron calcular parámetros cinéticos aceptables, fueron obtenidos usando el último método. Los resultados evidencian la influencia de los catalizadores y de la velocidad de calentamiento en los procesos de pirólisis de la lignina en presencia de los sulfatos de estudio, que se confirma con la obtención de diferentes parámetros cinéticos. En términos generales, los sulfatos de zinc y férrico retardan el proceso de pirólisis de la lignina. Los resultados sugieren que los sulfatos de zinc y férrico cambian el mecanismo cinético de la pirólisis de la lignina.

Biografía del autor/a

Alberto Ricardo Albis Arrieta, Universidad del Atlántico

Profesor Asociado

Ever Ortiz Muñoz, Universidad del Atlántico

Programa de Física, Facultad de Ciencias Básicas

Ismael Enrique Piñeres Ariza, Universidad del Atlántico

Programa de Física, Facultad de Ciencias Básicas

Juan Sebastián Osorio Cardozo, Universidad del Atlántico

Ingeniero Químico

Jennifer Monsalvo Morales, Universidad del Atlántico

Ingeniera Química

Citas

R. P. Rodríguez, R. Sierens, S. Verhelst, and N. F. Frontela, "Evaluación del funcionamiento de motores de combustión interna trabajando con biodiesel", Ingeniería Mecánica, 3, 33-38, 2008.

M. B. Perdices, "La Biomasa como Recurso Energético," En: Cambio Climático, ¿Un desafío a nuestro alcance?, P. Ramos Castellanos. ed.: Ediciones Universidad de Salamanca. Salamanca p. 167-180.

J. L. R. Montiel, "La biomasa cañera como alternativa para el incremento de la eficiencia energética y la reducción de la contaminación ambiental", Centro Azúcar, 30 (2), 14-21, 2003.

M. Camps Michelena and F. Marcos Martín, Los biocombustibles. Madrid Ediciones Mundi-Prensa, 2008, p.20-40.

N. A. Soto, W. R. Machado, and D. L. López, "Determinación de los parámetros cinéticos en la pirólisis del pino ciprés", Quim. Nova, 33 (7), 1500-1505, 2010.

A. Abril and E. A. Navarro, Etanol a partir de biomasa lignocelulósica. Valencia: Aleta Ediciones, 2012, p.11-41.

J. A. Caballero, (1995) "Estudio cinético de la pirólisis de lignina: diseño de un reactor para el estudio de las reacciones secundarias." Doctor en Ingeniería Química, Universidad de Alicante.

A. Gani and I. Naruse, "Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass", Renewable energy, 32 (4), 649-661, 2007.

H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, "Characteristics of hemicellulose, cellulose and lignin pyrolysis", Fuel, 86 (12), 1781-1788, 2007.

D. Lv, M. Xu, X. Liu, Z. Zhan, Z. Li, and H. Yao, "Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification", Fuel Processing Technology, 91 (8), 903-909, 2010.

A. Khelfa, A. Bensakhria, and J. Weber, "Investigations into the pyrolytic behaviour of birch wood and its main components: primary degradation mechanisms, additivity and metallic salt effects", Journal of Analytical and Applied Pyrolysis, 101, 111-121, 2013.

M. J. Hurley, D. T. Gottuk, J. R. Hall Jr, K. Harada, E. D. Kuligowski, M. Puchovsky, J. M. Watts Jr, and C. J. Wieczorek, SFPE handbook of fire protection engineering. Springer, 2015,

Ö. Çepelioğullar, H. Haykırı-Açma, and S. Yaman, "Kinetic modelling of RDF pyrolysis: model-fitting and model-free approaches", Waste Management, 48, 275-284, 2016.

M. Martín-Lara, G. Blázquez, M. Zamora, and M. Calero, "Kinetic modelling of torrefaction of olive tree pruning", Applied Thermal Engineering, 113, 1410-1418, 2017.

K. Açıkalın, "Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis", Journal of Thermal Analysis and Calorimetry, 109 (1), 227-235, 2011.

A. Albis, E. Ortiz, A. Suárez, and I. Piñeres, "TG/MS study of the thermal devolatization of Copoazú peels (Theobroma grandiflorum)", Journal of thermal analysis and calorimetry, 1-9, 2013.

N. Chen, J. Ren, Z. Ye, Q. Xu, J. Liu, and S. Sun, "Kinetics of coffee industrial residue pyrolysis using distributed activation energy model and components separation of bio-oil by sequencing temperature-raising pyrolysis", Bioresource technology, 221, 534-540, 2016.

Z. Cheng, W. Wu, P. Ji, X. Zhou, R. Liu, and J. Cai, "Applicability of Fraser–Suzuki function in kinetic analysis of DAEM processes and lignocellulosic biomass pyrolysis processes", Journal of Thermal Analysis and Calorimetry, 119 (2), 1429-1438, 2015.

G. Várhegyi, "Aims and methods in non-isothermal reaction kinetics", Journal of Analytical and Applied Pyrolysis, 79 (1), 278-288, 2007.

G. Várhegyi, P. Szabó, and M. J. Antal, "Kinetics of charcoal devolatilization", Energy & fuels, 16 (3), 724-731, 2002.

B. Janković, "The pyrolysis process of wood biomass samples under isothermal experimental conditions—energy density considerations: application of the distributed apparent activation energy model with a mixture of distribution functions", Cellulose, 21 (4), 2285-2314, 2014.

E. Donskoi and D. McElwain, "Optimization of coal pyrolysis modeling", Combustion and flame, 122 (3), 359-367, 2000.

L. Abdelouahed, S. Leveneur, L. Vernieres-Hassimi, L. Balland, and B. Taouk, "Comparative investigation for the determination of kinetic parameters for biomass pyrolysis by thermogravimetric analysis", Journal of Thermal Analysis and Calorimetry, 1-13, 2017.

J. Yu, N. Paterson, J. Blamey, and M. Millan, "Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass", Fuel, 191, 140-149, 2017.

F.-X. Collard and J. Blin, "A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin", Renewable and Sustainable Energy Reviews, 38, 594-608, 2014.

R. Gottipati and S. Mishra, "A kinetic study on pyrolysis and combustion characteristics of oil cakes: Effect of cellulose and lignin content", Journal of fuel chemistry and technology, 39 (4), 265-270, 2011.

Z. Ma, Q. Sun, J. Ye, Q. Yao, and C. Zhao, "Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA–FTIR and Py–GC/MS", Journal of Analytical and Applied Pyrolysis, 117, 116-124, 2016.

B. de Caprariis, M. L. Santarelli, M. Scarsella, C. Herce, N. Verdone, and P. De Filippis, "Kinetic analysis of biomass pyrolysis using a double distributed activation energy model", Journal of Thermal Analysis and Calorimetry, 121 (3), 1403-1410, 2015.

J. Cai, W. Wu, and R. Liu, "An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass", Renewable and Sustainable Energy Reviews, 36, 236-246, 2014.

S. Chayaporn, P. Sungsuk, S. Sunphorka, P. Kuchonthara, P. Piumsomboon, and B. Chalermsinsuwan, "Evaluation of biomass component effect on kinetic values for biomass pyrolysis using simplex lattice design", Korean Journal of Chemical Engineering, 32 (6), 1081-1093, 2015.

T. Qu, W. Guo, L. Shen, J. Xiao, and K. Zhao, "Experimental study of biomass pyrolysis based on three major components: hemicellulose, cellulose, and lignin", Industrial & Engineering Chemistry Research, 50 (18), 10424-10433, 2011.

P. Murugan, N. Mahinpey, K. E. Johnson, and M. Wilson, "Kinetics of the pyrolysis of lignin using thermogravimetric and differential scanning calorimetry methods", Energy & fuels, 22 (4), 2720-2724, 2008.

D. Ferdous, A. Dalai, S. Bej, and R. Thring, "Pyrolysis of lignins: experimental and kinetics studies", Energy & fuels, 16 (6), 1405-1412, 2002.

Descargas

Publicado

2017-12-12

Número

Sección

Articles