Computed torque control of a 2-RR planar parallel robot // Control por par calculado de un robot paralelo planar 2-RR

Autores/as

  • Eugenio Yime Universidad del Atlántico
  • Javier Roldán Mckenley Universidad del Atlántico
  • Jose Luis Villa Ramirez Universidad Tecnológica

DOI:

https://doi.org/10.15665/rp.v15i2.1111

Palabras clave:

dinámica paralela, control de robots, mecanismo 5 barras, robot 2D-5R

Resumen

Se presentan el diseño, la construcción y el control de un mecanismo plano de cinco eslabones con cinco juntas de revoluta y dos grados de libertad. Se implementó el control por par calculado en el espacio articular para lograr una trayectoria deseada. Se desarrolló la cinemática de posición y de velocidad, tanto directa como inversa, y únicamente la cinemática inversa de aceleración como parámetro requerido en la ley de control. El enfoque escogido para este robot paralelo es ventajoso puesto que permite obtener una ecuación dinámica similar al modelamiento convencional de robots seriales, lo cual facilita la implementación de técnicas de control no lineal. La validez del enfoque planteado y la funcionalidad del controlador se verifican experimentalmente mediante la generación de una trayectoria circular por el efector. A pesar de la concordancia entre la simulación y los resultados experimentales, se sugiere como futuro trabajo el cambio en la estrategia de control para compensar efectos no modelados del sistema.

Citas

O. Vinogradov, Fundamentals of kinematics and dynamics

of machines and mechanisms. USA: CRC Press, 2000.

J. Uicker, G. Pennock, J. Shigley, Theory of machines

and mechanisms. USA: Oxford University Press, 2010.

R. Norton, Design of machinery: an introduction to the

synthesis and analysis of mechanisms and machines. New

York: McGraw-Hill, 2011.

M. Stanisic, “Mechanisms and Machines: Kinematics,

Dynamics, and Synthesis”. USA: Cengage Learning,

B. Seth, S. Vaddi. “Programmable Function Generators–

i: Base Five-Bar Mechanism”, Mechanism and Machine

Theory, 38(4), 321–330, 2003.

H. Zhou, K. Ting, “Path Generation with Singularity

Avoidance for Five-Bar Slider-Crank Parallel Manipulators”,

Mechanism and Machine Theory, 40(3), 371–384,

J. Kim, “Task Based Kinematic Design of a Two DOF

Manipulator with a Parallelogram Five-Bar Link Mechanism”,

Mechatronics, 16(6), 323–329, 2006.

P. Ouyang, Q. Li, W. Zhang, L. Guo, “Design, Modeling

and Control of a Hybrid Machine System”, Mechatronics,

(10), 1197–1217, 2004.

S. Nahavandi, M. Uddin, M. Saadat, H. Trinh, “Heavy

Tools Manipulation by Low Powered Direct-Drive

Five-Bar Parallel Robot”, Mechanism and Machine

Theory, 43(11), 1450–1461, 2008.

H. Giberti, S. Cinquemani, S. Ambrosetti, “5R

-DOF Parallel Kinematic Manipulator: A Multidisciplinary

Test Case in Mechatronics”, Mechatronics, 23(8),

– 959, 2013.

H. Krebs, M. Ferraro, S. Buerger, M. Newbery, A.

Makiyama, M. Sandmann, D. Lynch, B. Volpe, N. Hogan,

“Rehabilitation Robotics: Pilot Trial of a Spatial

Extension for Mit-Manus”, Neuroengineering and Rehabilitation,

(5), 1-15, 2004.

M. Villarreal, C. Cruz, J. Álvarez, E. Portilla, “Differential

Evolution Techniques for the Structure Control

Design of a Five-Bar Parallel Robot”, Engineering Optimization,

(6), 535–565, 2010.

A. Joubair, M. Slamani, I. Bonev, “Kinematic Calibration

of a Five-Bar Planar Parallel Robot Using all

Working Modes”, Robotics and Computer-Integrated Manufacturing,

(4), 15–25, 2013.

QUANSER. 2-DOF robot. 2014. Fecha de Consulta:

Julio 7, 2015. URL: http://www.quanser.com/

Products/2dof_robot.

A. Figielski, I. Bonev, P. Bigras. (2007, Oct.).

Towards development of a 2-DOF planar parallel robot

with optimal workspace use. Presented at IEEE

Int. Conf. on Systems, Man and Cybernetics-ISIC,

Montreal, Canada.

L. Campos, F. Bourbonnais, I. Bonev, P. Bigras.

(2010, Aug.). Development of a five-bar parallel robot

with large workspace. Presented at ASME International

Design Engineering Technical Conferences and

Computers and Information in Engineering Conference,

Montreal, Canada.

F. Bourbonnais, P. Bigras, I. Bonev, “Minimum-

Time Trajectory Planning and Control of a Pick-and-

Place Five-Bar Parallel Robot”, IEEE/ASME Trans. on

Mechatronics, 20(2), 740-749, 2015.

F. Wu, W. Zhang, Q. Li, P. Ouyang, Z. Zhou, “Control

of Hybrid Machines with 2-DOF for Trajectory

Tracking Problems”, IEEE Trans. on Control Systems Technology,

(2), 338–342, 2005.

L. Cheng, Y. Lin, Z.G. Hou, M. Tan, J. Huang, W.

Zhang, “Adaptive Tracking Control of Hybrid Machines:

A Closed-Chain Five-Bar Mechanism Case”, IEEE/

ASME Trans. on Mechatronics, 16(6), 1155–1163, 2011.

L. Cheng, Z. Hou, M. Tan, W. Zhang, “Tracking

Control of a Closed-Chain Five-Bar Robot with Two

DOF by Integration of an Approximation-Based Approach

and Mechanical Design”, Systems, Man, and

Cybernetics, Part B: IEEE Trans. on Cybernetics, 42(5),

–1479, 2012.

B. Zi, J. Cao, Z. Zhu, “Dynamic Simulation of Hybrid-

Driven Planar Five-Bar Parallel Mechanism based

on Simmechanics and Tracking Control”, Int. J. of Advanced

Robotic Systems, 8(4), 28–33, 2011.

H. Yu, “Modeling and Control of Hybrid Machine

Systems: A Five-Bar Mechanism Case”, International

Journal of Automation and Computing, 3(3), 235–243, 2006.

A. Peidró, A. Gil, J. Marín, O. Reinoso, “A Web-

Based Tool to Analyze the Kinematics and Singularities

of Parallel Robots”, Intelligent & Robotic Systems, 81(1),

–163, 2015.

S. Karande, P. Nataraj, P. Gandhi, M. Deshpande.

(2009, Feb.). Control of parallel flexible five-bar manipulator

using QFT. Presented at IEEE Int. Conf. on Industrial

Technology-ICIT, Gippsland, Australia.

K. Stachera, F. Schreiber, W. Schumacher. 2011.

“Modeling, control, and evaluation of an experimental

adaptronic five-bar robot”. In: D. Schütz and F. Wahl

(Eds.). “Robotic systems for handling and assembly”,

, 125-142. Berlin: Springer Tracts in Advanced Robotics,

E. Yime, R. Saltaren, J. Díaz. (2010, Jun.). Robust

adaptive control of the Stewart-Gough robot in the task

space”. Presented at American Control Conference-

ACC. Baltimore, United States.

E. Yime, R. Saltaren, C. García, J. Sabater, “Robot

Based on Task-Space Dynamical Model”, Control Theory

Applications, 5(18), 2111–2119, 2011.

J. Slotine, W. Li, Applied nonlinear control. USA:

Prentice Hall, 1991.

B. Siciliano, O. Khatib, Springer handbook of Robotics.

USA: Springer International Publishing. 2008.

Pengutronix. “Real Time Kernel: Linux community

distribution”. 2016. Fecha de Consulta: Junio 28, 2016.

URL: http://debian.pengutronix.de/.

L. Fu and R. Schwebel. “RT-Preempt Patch”. 2014.

Fecha de Consulta: junio 28, 2016. URL: https://rt.wiki.

kernel.org/index.php/RT PREEMPT HOWTO.

Descargas

Publicado

2017-07-06