Estado del arte sobre perfiles de dientes para engranajes

Pedro Nel Martínez Henao
Nelson Arzola de la Peña


DOI: http://dx.doi.org/10.15665/rp.v12i2.286

Resumen


Este artículo resume los aspectos más importantes a tener en cuenta en el diseño de los perfiles de los dientes de
engranajes, incluyendo consideraciones relacionadas con la capacidad de carga, diseño de perfil de los dientes,
error de transmisión, ángulo de presión, el desgaste y el análisis de fallos. El objetivo principal de esta revisión
es aportar criterios de selección para el diseño de perfiles de los dientes de engranajes rectos que ofrecen mayor
capacidad y error mínimo de transmisión, por tanto esta investigación aporta una mejor comprensión del diseño
basado en las variaciones geométricas del perfil de los dientes en los engranajes.


Palabras clave


Engranaje; Perfil del diente; Error de transmisión, Capacidad de carga; Análisis de falla; Ángulo presión.

Texto completo:

PDF

Referencias


H. W. Jianing, Zhang., “Optimum Design and Research

on the Involute Gear Tooth Profile,” International Conference

on Electronic & Mechanical Engineering and information

Technology, p. 4, 2011.

T. Y. C. Ming Haung, Tsai., “Design of high contact ratio

spur gears using quadratic parametric tooth profiles,”

Mechanism and Machine Theory, vol. 33, pp. 551-564, 1998.

F. T.-W. Zhang-Hua, Chiang.Chieh, Wen Tsay., “Mathematical

Model for Parametric Tooth Profile of Spur Gear

Using Line of Action,” Mathematical and Computer Modelling

vol. 36, pp. 603-614, 2002.

G. González Rey, “Relación geometrica para trazado

del perfil de los dientes de negranajes cilíndricos,” CUJAE,

Facultad de Ingeniería Mecánica.Cuba, 2005.

S. Luo, Y. Wu, and J. Wang, “The generation principle

and mathematical models of a novel cosine gear drive,”

Mechanism and Machine Theory, vol. 43, pp. 1543-1556, 2008.

S.-C. Yang, “Mathematical model of a stepped triple

circular-arc gear,” Mechanism and Machine Theory, vol. 44,

pp. 1019-1031, 2009.

S. N. Sankar, Muthusamy., “Profile modification—a

design approach for increasing the tooth strength in spur

gear,” The International Journal of Advanced Manufacturing

Technology, vol. 55, pp. 1-10, 2010.

H. İmrek and H. Düzcükoğlu, “Relation between wear

and tooth width modification in spur gears,” Wear, vol.

, pp. 390-394, 2007.

L. Cheng-Kang, “Manufacturing process for a cylindrical

crown gear drive with a controllable fourth order polynomial

function of transmission error,” Journal of Materials

Processing Technology, vol. 209, pp. 3-13, 2009.

M. Abbas, S. H. J. a. Yahaya, M. Ena, A. Ahmad, and J.

M. Ali, “Spur Gear Tooth Design and Transition Curve as

a Spiral Using Cubic Trigonometric Bezier Function,” pp.

-81, 2011.

J. Wang, H. Liang, S. Luo, and R. Y. Wu, “Active design

of tooth profiles using parabolic curve as the line of

action,” Mechanism and Machine Theory, vol. 67, pp. 47-63,

O. Alipiev, “Geometric design of involute spur gear

drives with symmetric and asymmetric teeth using the

Realized Potential Method,” Mechanism and Machine

Theory, vol. 46, pp. 10-32, 2011.

C. Yanmei, F. Zongde, S. Jinzhan, F. Xianzhang, and

P. Xianlong, “Precise modeling of arc tooth face-gear with

transition curve,” Chinese Journal of Aeronautics, vol. 26, pp.

-1351, 2013.

I. N.-S. Atanasovska, Vera., “Influence of addendum

modification coefficient on the gear load capacity,” Faculty

of Мanagement in Industry, JNA 63, 37000 Krusevac, Serbia.,

p. 7, 2006.

T. C. H. Yeh, Daniel. Tong, Shih-Hsi. , “Design of new

tooth profiles for high load capacity gears,” Mechanism and

Machine Theory, vol. 36, 2001.

T. Costopoulos and V. Spitas, “Reduction of gear fillet

stresses by using one-sided involute asymmetric teeth,”

Mechanism and Machine Theory, vol. 44, pp. 1524-1534, 2009.

J. I. Pedrero, M. Pleguezuelos, M. Artés, and J. A.

Antona, “Load distribution model along the line of contact

for involute external gears,” Mechanism and Machine

Theory, vol. 45, pp. 780-794, 2010.

J. Ashwini and K. K. Vijay, “Effect on Strength of Involute

Spur Gear by Changing the Fillet Radius Using

FEA,” International Journal Of Scientific & Engineering Research,

vol. 2, 2011.

M. Ristivojević, T. Lazović, and A. Vencl, “Studying

the load carrying capacity of spur gear tooth flanks,” Mechanism

and Machine Theory, vol. 59, pp. 125-137, 2013.

A. Machado, J. Moya, and L. Negrín, “Análisis de la

influencia de los desplazamientos en la capacidad portante

de los engranajes cilindricos a flexion,” 2001.

Z. L. O. Cotaquispe, “Influencia de los parametros

geométricos para la obtención de un modelo matemático

estable para el cálculo de los esfuerzos en la raíz del diente,”

Facultad de Ciencias e Ingeniería, Pontificia Universidad

Católica del Perú, 2006.

J. Pedrero, M. Pleguezuelos, and M. Muñoz, “Contact

stress calculation of undercut spur and helical gear teeth,”

Mechanism and Machine Theory, vol. 46, pp. 1633-1646, 2011.

Li-Shuting., “Effect of addendum on contact strength,

bending strength and basic performance parameters of a

pair of spur gears,” Mechanism and Machine Theory, vol. 43,

pp. 1557-1584, 2008.

A. Gopi Chand, A. Sharma, K. Pavan Kumar, and I.

A. Sainath, “Design of Spur Gear and its Tooth profile,”

Journal of Engineering Research and Applications (IJERA), vol.

, pp. 2248-9622, 2012.

Z. Chen and Y. Shao, “Mesh stiffness calculation of a

spur gear pair with tooth profile modification and tooth

root crack,” Mechanism and Machine Theory, vol. 62, pp. 63-

, 2013.

A. Fernández, M. Iglesias, A. de-Juan, P. García, R.

Sancibrián, and F. Viadero, “Gear transmission dynamic:

Effects of tooth profile deviations and support flexibility,”

Applied Acoustics, vol. 77, pp. 138-149, 2014.

H. C. Ming and J. W. Wen, “

teeth for variable surface pressure distribution.pdf>,”

Mathematical analysis and applications, vol. 167, pp. 182-202,

G. A. M. Danieli, D., “New developments in variable

radius gears using constant pressure angle teeth,” Mechanism

and Machine Theory, vol. 40, pp. 203-217, 2005.

C. Spitas and V. Spitas, “Effect of Cutter Pressure Angle

on the Undercutting Risk and Bending Strength of 20°

Involute Pinions Cut with Equivalent Nonstandard Cutters#,”

Mechanics Based Design of Structures and Machines,

vol. 36, pp. 189-211, 2008.

A. Sommer, J. Meagher, and X. Wu, “An Advanced

Numerical Model of Gear Tooth Loading from Backlash

and Profile errors,” p. 14, 2010.

Li-Shuting., “Effects of machining errors, assembly

errors and tooth modifications on loading capacity, loadsharing

ratio and transmission error of a pair of spur

gears,” Mechanism and Machine Theory, vol. 42, pp. 698-726,

M. A. K. Hotait, A., “Experiments on the relationship

between the dynamic transmission error and the dynamic

stress factor of spur gear pairs,” Mechanism and Machine

Theory, vol. 70, pp. 116-128, 2013.

C. H. Wink and A. L. Serpa, “Performance assessment

of solution methods for load distribution problem of gear

teeth,” Mechanism and Machine Theory, vol. 43, pp. 80-94,

K. Mao, “Gear tooth contact analysis and its application

in the reduction of fatigue wear,” Wear, vol. 262, pp.

-1288, 2007.

L. Zheng and M. Ken, “Frictional Effects on Gear

Tooth Contact Analysis,” The Gearbox Research Institute,

Dalian Huarui Heavy Group Co., Ltd., p. 13, 2009.

I. ASM, General Procedures for Failure Analysis, 2002.

H. Düzcükoğlu and H. İmrek, “A new method for preventing

premature pitting formation on spur gears,” Engineering

Fracture Mechanics, vol. 75, pp. 4431-4438, 2008.

G. Fajdiga and M. Sraml, “Fatigue crack initiation and

propagation under cyclic contact loading,” Engineering

Fracture Mechanics, vol. 76, pp. 1320-1335, 2009.

H. Imrek and A. Unuvar, “Investigation of influence

of load and velocity on scoring of addendum modified

gear tooth profiles,” Mechanism and Machine Theory, vol.

, pp. 938-948, 2009.

G. Donzella and C. Petrogalli, “A failure assessment

diagram for components subjected to rolling contact loading,”

International Journal of Fatigue, vol. 32, pp. 256-268,

A. Beheshti and M. M. Khonsari, “On the prediction

of fatigue crack initiation in rolling/sliding contacts with

provision for loading sequence effect,” Tribology International,

vol. 44, pp. 1620-1628, 2011.

T. Osman and P. Velex, “A model for the simulation of

the interactions between dynamic tooth loads and contact

fatigue in spur gears,” Tribology International, vol. 46, pp.

-96, 2012.

S. Li and A. Kahraman, “A micro-pitting model for

spur gear contacts,” International Journal of Fatigue, vol. 59,

pp. 224-233, 2014.

Y. Pandya and A. Parey, “Experimental investigation

of spur gear tooth mesh stiffness in the presence of

crack using photoelasticity technique,” Engineering Failure

Analysis, vol. 34, pp. 488-500, 2013.


Enlaces refback

  • No hay ningún enlace refback.


Licencia Creative Commons
Este trabajo esta licenciado bajo una Licencia Internacional Creative Commons Atribución-NoComercial-SinDerivados 4.0.

 

ISSN : 1692-8261 Versión impresión
ISSN : 2216-1368 Versión Web

RedesRepositorio UACRedes Sociales
 


Licenciada bajo: