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ABSTRACT

This article addresses the problem of calculating the relative elasticity of materials by using ultrasound 
elastography. The needed procedure to compute an elastogram through the freehand method is presented, using 
some algorithms reported in the literature to compute displacements, deformations, and normalization of the 
elastogram image. Using ultrasound frames from both, phantoms and biological tissues available at web sites, 
the reliability of the relative elasticity information obtained with such algorithms is studied, based on the quality 
inferred from the signal to noise ratio of the elastogram. The result of this analysis shows the need for new 
algorithms providing information about the hardness of tissues, but being also reliable and easy to interpret so 
that they can be used in the clinical practice.
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RESUMEN

En este artículo se presenta el procedimiento para calcular la elasticidad relativa de materiales usando 
elastografía por ultrasonido. El artículo describe el procedimiento necesario para el cálculo del elastograma 
a mano libre, utilizando algoritmos reportados en la literatura para cálculo de desplazamientos, cálculo de 
deformación y normalización de la imagen del elastograma. Utilizando marcos de ultrasonido de phantoms 
y de tejidos biológicos disponibles en bases de datos de sitios en internet, se estudia la confiabilidad de la 
información de elasticidad relativa obtenida con tales algoritmos, con base al parámetro de calidad relación 
señal a ruido. El resultado de este análisis muestra la necesidad de nuevos algoritmos para poder proporcionar 
una información semicuantitativa acerca de la dureza de los tejidos que sea de fácil interpretación y buena 
confiabilidad para el uso de esta técnica como herramienta diagnóstica de enfermedades en la práctica 
clínica.
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elastogramas.
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1. INTRODUCTION

Ultrasonic elastography (USE) is an imaging technique 
that allows calculating the degree of hardness of 
materials from ultrasound (US) echoes reflected on 
a material. It has become a promising technique to 
determine the degree of tissue elasticity from its 
compression, allowing distinguishing a healthy tissue 
from one with abnormalities, being very useful in the 
improvement of medical diagnosis of diseases affecting 
the biological tissues, including cancer. In the literature, 
ultrasound elastography has been used as a diagnostic 
tool for breast cancer [1-2], thyroid cancer [3], prostate 
cancer [4], carotid plaque elasticity [5], liver fibrosis [6], 
among other pathologies.

Static USE introduced in [7] is a technique where an 
external quasi-static compression is axially applied 
to the tissue to acquire successive RF frames. The 
RF data sequence is processed to obtain the images 
before and after compression. Typically, a block 
searching algorithm finds the axial and lateral relative 
displacements between these two images. The axial 
strains field is calculated as the gradient of the axial 
displacements.

The previous work in [8] has shown how the quality of 
the elastogram (the image with elasticity information 
obtained by the elastography technique), depends 
on several factors such as non-uniform compression, 
out-of-plane motion, strain-dependence of noise 
in elastograms frequency-dependent attenuation, 
uncontrolled and unwanted transducer motion 
introduced by the operator, the used displacement 
computing algorithms, among others. Therefore, one 
of the main drawbacks of this procedure in clinical 
practice concerns to reliability of the diagnostics derived 
from an elastogram. The works in [9-11] evaluate the 
performance of USE in the diagnosis of breast lesions, 
concluding that at present, elastography does not have 
the potential to replace conventional B-mode US in the 
detection of breast cancer. However, improvements 
such as the achievement of quantitative measurements 
could enhance its clinical acceptance.

This work addresses some needed procedures and 
algorithms in order to obtain an ultrasound elastogram, 
and discuss the difficulties to be overcome to achieve 
clinical diagnosis of diseases using USE. This paper 
has been organized as follows: Section 2 presents the 
computing algorithms and procedures to obtain a 
normalized elastogram. Section 3 presents validating 
results of the procedure to get the elastogram with 
some discussion about the difficulties to be overcome 
in order to achieve confident clinical diagnostics from 
USE. Finally, Section 4 presents some conclusions and 
suggestions for further work.

2. METHODS

In this work, a set of software functions for OpenCv and 
Matlab® has been built, which allows the obtaining of 
a normalized elastogram useful for elasticity analysis. 
The processing procedure can be summarized as follows: 
(I) raw RF of pre and post-compression frames are used 
to compute the relative axial and lateral displacements 
between this pair of frames; (II) a spatial gradient applied 
to the axial displacements image is used to compute 
the strains image or elastogram; (III) a normalization 
procedure is applied to the strains image in order to 
compensate the depth dependency of the strains or 
elevation of the probe during the scan; (IV) using the RF 
echoes from websites for both, phantom and patients 
diagnosed with some diseases, a discussion is made 
about difficulties and requirements to achieve confident 
and conclusive clinical diagnostics of diseases using USE. 

The following subsections describe the theoretical 
foundations and the algorithms used in this work 
through these five stages of processing.

2.1 Axial and lateral displacements

This paper focuses on the free-hand quasistatic axial 
strain imaging technique, which has shown to be very 
promising in clinical trials and has been commercialized 
by several manufacturers [12-13]. The clinician holds 
an ultrasound transducer over the area of interest 
while gently varies the contact pressure, thus inducing 
mechanical stress in the targeted tissue, predominantly 
in the axial direction. Consecutive frames in the RF data 
sequence are compared conforming a set of reference 
images (before the compression), and deformation images 
(after static compression) to estimate the resulting axial 
and lateral displacements. Most of the useful elasticity 
findings from an elastogram can be obtained from the 
axial displacements, even though lateral displacements 
can be used to get more accurate results in some specific 
cases [14-15].

Numerous algorithms have been reported in the literature 
aimed to the displacements computing, being the key 
differential subjects: speed, accuracy and robustness. The 
work in [8], made a comparison about the impact on the 
quality of the elastogram, of the algorithms used for the 
displacements calculation. For a better understanding of 
the procedures and algorithms, excerpts from this work 
have been replicated in this paper.

Algorithms for displacements computing can be 
roughly classified as block matching based or not block 
matching based. Consider figure 1, where a kernel 
centered at location (i, j) in the reference frame must be 
matched with a kernel of the same size in the deformed 
frame, whose center should be displaced due to the 
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exerted compression. The kernel is then swept through 
the whole reference frame and for each center (i, j), a 
search window greater than the kernel and centered 
at the same location, is settled into the deformed frame. 
The displacement of the center of the matching kernel is 
established in the relative coordinates of a search window 
(range of kernel centers) defined by -U1≤u≤U2 and -V1≤ 
v ≤V2, where U1, U2, V1 and V2 are the lengths of the 
search window in up, down, left and right directions, 
respectively. The height and width of the search region 
are U= U1+U2+1 and V=V1+V2+1 respectively. The 
relative locations of the centers of the matching kernels 
(umatch,vmatch) are stored in the axial displacements image 
di  and lateral displacements image dj  as:

(di (k,l),dj (k,l)=(umatch), vmatch ).

The distribution of the displacements are usually not as 
fine as the RF samples, i.e. if i axis is swept in k steps 
and j axis is swept in l steps, the resulting displacements 
are sub-sampled images of the original frames.

Figure 1. Definition of kernel and searching region.
Figura 1. Definición del kernel y la región de búsqueda.

Typical implementations of the matching blocks 
algorithms need a good selection of Uand V, which must 
be large enough to ensure that the displaced kernel can 
be contained in the search region, thus avoiding high 
decorrelation of the resulting matching blocks. About 
how to decide which kernel in the deformed frame 
matches to the kernel in the reference frame, the decision 
is made from the minimization or maximization of a 
similarity measure. Numerous similarity measures 
have been proposed in the literature to this end, which 
have been used in the computer vision field since long 
time ago. Some of them are summarized in the table 1, 
where W is the kernel window centered at (i,j), r1 and r2 
are the pre and post deformation RF frames, u and v are 
the relative axial and lateral displacements of the kernel 
in the deformed frame, and Mr and Md are the means 
of the kernel window over the pre-deformed and post-
deformed frames respectively. Thus, for each pair (i,j) 
on the pre-deformed frame, the corresponding relative 
displacements of the post-deformation frame will be 
those pair (u,v) maximizing (ZNCC) or minimizing 
(SAD, SSD, ZSSD) the similarity measurement criteria 
on the whole searching region.

The basic exhaustive matching blocks algorithm can be 
improved with multilevel searching strategies which 
can be faster due to a progressive refinement of the 
precision at different levels of processing. They can 
automatically compute convenient kernel windows to 
avoid high decorrelation of the matching blocks. One 
example of this approach is the hybrid method [16] of 
estimation of displacements which has three processing 
levels.

The main drawback of the optimization process 

Table 1. Some similarity measurements used for matching of blocks methods.
Tabla 1. Algunas mediciones de similitud utilizadas para apareado de los métodos de bloques.
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for block matching in the previous methods is time 
consumption. In the Dynamic Programming Approach 
(DPA), a cost function C is globally optimized in a non-
iterative way through recursive computing. In this 
way, time consumption is drastically reduced and the 
cost function can be used efficiently to penalize non 
smooth adjacent displacements, preventing noisy effect 
on decorrelated data. This method can be referred as a 
non-matching blocks method since its matching process 
is achieved as a whole optimization process of the cost 
function at sampled data level. Details of this technique 
can be consulted in [17].

2.2 Axial strains

Consider image’s variation before and after deformation 
described in figure 2, where an affine transformation can 
be established in order to describe the deformation of 
the image based on its axial and lateral displacements. 
Q(x,y) is an arbitrary point in the pre-deformation 
sub-image and its corresponding point in the post-
deformation sub-image is Q'(x,y'), where the points Q 
and Q’ have been matched through registration. Taylor 
expansion for point Q'(x' ,y') is made and the high order 
infinitesimal term is omitted. Then the relationship 
between Q'(x' ,y') and Q(x,y)  can be gotten as follows:

Figure 2. Sketch for affine transformation of an image. 
Source [18]
Figura 2. Esquema de transformación afín de una 
imagen. Fuente [18]

In (equation 1), the first order partial differentials 
denote the strain profiles. Note that for the case 
of a rigid body, the difference between the images 

before and after deformation corresponds just to a 
displacement, not to a deformation, and strains would 
be zero. Therefore, higher strains values correspond to 
softer materials while low strains values correspond to 
harder materials. The strains and  are referred as 
normal strains (axial and lateral respectively), and they 
are related with amount of stretch or compression along 
material line elements or fibers. The normal strain is 
positive if the material fibers are stretched and negative 
if they are compressed.

The strain map is usually displayed as a grey level 
image and is known as elastogram, being an indicator 
of the relative elasticity properties of the materials in 
the RF ultrasound frames. Even though both, axial 
and lateral normal strains have been reported as 
containing useful information for clinical diagnostics, 
the axial strain usually is the only one used for 
elastography. The algorithms used to calculate this map 
consist of calculating the spatial gradient of the axial 
displacements. Many filters used in computer vision 
are available to this end, and since the gradient is a 
noisy operation, some kind of smoothing filter, such 
as the Kalman filter [14], is necessary to improve the 
appearance of the image.

2.3 Strains normalization

The quality of an elastogram can be estimated from 
its signal to noise ratio (SNR) map, which is defined 
in elastography as SNRW=   ⁄σ   [17], where  and σ 
are the spatial average and variance of a window W 
on the strain image, respectively. The strain map is 
computed moving the analysis window trough the 
whole image. High SNR values indicate uniformity of 
the strains in regions of similar elastic properties, which 
in some sense indicate a certain confidence grade of the 
computed mean strain.

Axial relative displacements have not a uniform 
distribution through the whole echo frame. This makes 
sense since the regions near the ultrasound probe, 
where the compression is done, experience big axial 
displacements, in contrast with the low displacements 
registered in deeper regions, far from the compression 
area. This fact is transferred to the strain map and 
contributes to low SNR of the elastogram, besides to 
making the elasticity reading difficult, given that it 
turns out to be dependent on the depth in the RF frame.

To compensate for this effect, several authors referred 
a normalization procedure, which in fact is a depth 
dependent compensation procedure. In [19], for 
example, the basic problem of finding an appropriate 
strain scale for each image can be solved robustly by 
fitting a plane to the entire set of displacement estimates, 

(1)
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{d(x,y)}. This is performed in that work through the 
method of precision-weighted least squares, thereby 
determining an “normalization" strain. One possible 
equation of the fitted plane can be as follows:

Where ŝ (x,y)  is a normalization strain which is 
computed as follows:

(Equation 3) can adjust for the reduced stress at greater 
depths away from the probe, as the stress spreads 
out into the surrounding tissue. Another option for a 
normalization strain is adjusting for the possibility that 
the probe may rotate about the elevational axis during 
the scan, resulting in stress variation over the lateral 
direction. (Equation 4) is appropriate to this end.

The strain estimates should be scaled so that the 
dynamic range in the display is from zero up to a fixed 
multiple of the normalized strain, ŝ. Denoting pre-
normalization strain estimates and post-normalization 
strain by sA and sB respectively, then:

3. RESULTS

In this section, the aforementioned procedure has been 
applied to pre-compression and post-compression echo 
data for three study cases considered: (I) a phantom 
described in [14] and [17] whose RF frames are available 
from the AM2D software at the website in [20]; (II) 
RF frames collected for two patients with a linear 
transducer array from the Antares™ System, available 
at the Insana Lab web site in [21], corresponding 
to a benign fribroadenoma and an invasive ductal 
carcinoma diagnostics. For the three study cases, the 
probe is manually pressed into the surface scanning 
in the anterior-posterior direction during some time 
period. Just two RF frames have been considered for 
each case in this study, one at the beginning of the echoes 
collection, and the other one, once the compression 
has been settled. The axial displacements have been 
computed using the AM2D [20] MatLab® functions 
which implements the DPA algorithms proposed in 
[14].

For analysis purposes, initially consider the phantom 

(2)

(3)

(4)

(5)

case analyzed in [8]. Figure 3 shows the B-mode pre-
compressed frame (reference frame) and the computed 
axial displacements, where the top to bottom in the 
figure is the axial direction and the region at top is 
the closest to the ultrasound probe, and the region at 
bottom is the deeper region reached by the echoes.

Figure 3. a) Reference image: Phantom. b) Axial 
displacements: Phantom.
Figura 3. a) Imagen de referencia: Phantom. b) 
Desplazamientos axiales: Phantom.

As has been reported in literature, axial displacements 
are dependent of the depth in the image. For a better 
understanding of this phenomenon, a k-means 
segmentation procedure was computed in order to 
reveal groups of similar displacements on the axial 
displacements graph. The result of this procedure 
for seven groups is shown in figure 4. The grouping 
of regions with similar axial displacements reveals a 
clear dependence between the depth and the values 
of the displacement, as intuitively is expected since 
the regions near the surface compression should suffer 
greater displacement than those who are distant to the 
probe.

Figure 4. K-means segmentation of axial 
displacements.
Figura 4. Segmentación K-medias de los 
desplazamientos axiales.

Using the spatial gradient plus a Kalman filter designed 
in [20], the axial strain elastogram for the phantom case 
is shown in figure 5. The color map in figure must be 

a) b)
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uniformity of the predicted elasticity whereas white 
regions represent high uniformity of the predicted 
elasticity. Fig. 7 (a) is the SNR of the elastogram without 
normalization, while Fig. 7 (b) is the SNR image of 
the normalized elastogram. The circled shape of the 
black regions agrees with the border of the disc in the 
phantom, where elasticity changes are expected. The 
normalization procedure was able to increase the mean 
SNR value from 10.27 dB to 11.18 dB in this study case.

The elastograms of patients present challenging 
problems due to the impedance changes suffered by 
the echoes through the various kinds of tissues, blood 
vessels, changes in elevation of the ultrasound probe, 
etc., which results in increased noise levels. The results 
are highly dependent of the size of the searching 
region for the axial displacement. Thus, higher sizes 
of searching windows allow the finding of suspecting 
masses in the frame, but resolution of the information 
is decreased. Lower sizes of searching windows result 
in noisy elastograms. In this work, axial size of the 
searching window has 100 pixels long, while lateral size 
of the searching window has 6 pixels long, allowing the 
detection of masses of approximately equal area.

Figure 8 shows the B-mode reference image and the 
normalized elastogram for the patient diagnosed 
with benign fibroadenoma (breast). Colors in the map 
reveal that tissues on the image have relatively the 
same low hardness, allowing discarding the masses in 
the reference image as having a malign classification. 
Figure 9 shows the same images for the patient case 
diagnosed with ductal carcinoma (breast). The hard 
black color inside the defined closed region at the 
top center of the image reveals the presence of a hard 
mass in that region. Full colored elastograms facilitate 
the interpretation, but there is need for automatic 
algorithms able to classify the tissues as benign or 
malign, since there is no way to establish a reference of 
hardness over the image.

Figure 7. a) SNR without normalization b) SNR with 
normalization.
Figura 7. a) SNR sin normalización b) SNR con 
normalización.

interpreted as follows. Colors towards black in the 
map correspond to regions experiencing lower relative 
deformations, i.e. regions of increased hardness, 
while colors towards white in the map correspond to 
regions experiencing higher relative deformations, 
i.e. softer regions. The depth dependence in the axial 
displacement map is also translated to the computed 
axial strain, since the spatial gradient of the axial 
displacement keeps this multiplicative factor. 

(Equations 4 and 5) were used to obtain the normalized 
axial strain of figure 6. Note that this normalization 
procedure achieves a correction of the strain 
information at deeper regions on the axial direction, 
which permits having a right hardness indication of the 
materials in the phantom since this phantom consists of 
a set of inclusions in a gelatin, where there is a hardness 
region of disk shape in the middle. The results of the 
elastogram suggest that the disk is three times harder 
than the environment, which is consistent with the 
known physical phantom data.

Figure 5. Axial strain elastogram: phantom.
Figura 5. Elastograma de deformación axial: phantom.

Figure 6. Normalized axial strain elastogram: 
phantom.
Figura 6. Elastograma de deformación axial 
normalizado: phantom.

The normalization process enhances the SNR too. Figure 
7 shows the SNR images resulting from sweeping the 
elastrogram of the phantom with a square window 
of size 7×7 pixels and mapping the SNR values over 
a gray color map, where black regions represent poor 
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Figure 8. a) Reference image: Benign b) Normalized 
axial strain: Benign.
Figura 8. a) Imagen de referencia: Benigno b) Imagen 
de deformación axial normalizada: Benigno.

Figure 10 shows the SNR of the normalized elastogram 
of the malign study case. This figure confirms the 
difficulties to build automated algorithms to establish 
benignity or malignity of masses found in the US 
echoes, due to the existence of non confident regions 
distributed through the whole elastogram.

Figure 9. a) Reference image: Malign b) Normalized 
axial strain: Malign.
Figura 9. a) Imagen de referencia: Maligno b) Imagen 
de deformación axial normalizada: Maligno.

Figure 10. SNR with normalization: Malign.
Figura 10. SNR con normalización: Maligno.

A brief discussion about the obtained results, 
summarizing troubles and prospects for clinical 
diagnosis of the explored technique is needed. 
Elastography has been reported since about 1990 as a 
promissory technique useful for clinical diagnostic of 
diseases such as several kinds of cancer. This work has 

a)

a)

b)

b)

explored reported techniques and algorithms which 
led to obtain the relative hardness of the materials from 
ultrasound echoes. The previous work in [8] shows 
how similar results can be obtained from different 
displacements algorithms, differing principally in 
computational efficiency issues. However, clinical 
studies about the confidence of these diagnostics 
reveal several difficulties to be overcome in order to 
make those promissory benefits, a reality. In this work, 
regardless of the mechanical and technical difficulties 
for the free hand technique to obtain repeatable results, 
many troubles related to the elastogram interpretation 
have been identified when these methods are applied to 
echoes from biologic tissues. They can be summarized 
as: (I) the elastogram is highly dependent on the 
parameters of the algorithms used to computing the 
axial displacements, so the clinical experience of an 
ultrasound technician is necessary in order to obtain 
reliable elastograms (II) masses on the US echoes have 
not clearly defined boundaries, thus hindering both, 
manual identification as automatic regions of interest, 
(III) the SNR of the elastograms is not uniform, which 
affects the reliability of results in all regions of the 
image. In current practices, the elastography images are 
presented side by side with 2D US B-mode image. The 
user needs to manually identify the probable lesions 
and draw corresponding boundaries around the 
lesions, and then the system displays the measured area 
and ratio of areas of strain elastography image besides 
the US B-mode images. The main drawback is that 
the user (physician or radiologist) is expected to draw 
the boundary across the probable lesions which are 
not very accurate. This manual boundary delineation 
makes the process subjective, and highly dependent 
upon the user’s expertise. However, computational 
intelligence tools arise as a possible solution to the 
problem of how to achieve reliable clinical diagnostics, 
since the ultrasound technicians’ expertise can be used 
to both, to configure the parameters of the algorithms 
and to establish a reliable clinical diagnosis. 

4. CONCLUSIONS

The USE has been reported as a promissory technique 
for medical diagnostics for nearly twenty years, with 
numerous commercial devices currently available. 
These devices are so expensive and not available to 
the majority of potential users in developing countries. 
Medical acceptance of these diagnostics remains at 
low levels due to both technical and computational 
difficulties in order to obtain reliable and conclusive 
results. However, nowadays it is possible, with not 
expensive electronic cards and better computational 
algorithms, to contribute to improved diagnostic 
procedures in medicine. 

In this work, a procedure to obtain elastograms has 
been presented and verified. Further work will be 
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addressed towards procedures to achieve reliable and 
automatic diagnostics, and towards the construction of 
low cost devices to these end.
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