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ABSTRACT

Artifact correction in magnetic resonance imaging (MRI) spans from acquisition/reconstruction and
hardware strategies to rapidly evolving deep learning (DL) approaches. We conducted a PRISMA-ScR—
aligned scoping review to map what is corrected, how it is evaluated, and where evidence gaps persist.
PubMed and Scopus were searched over the last five years and complemented by hand-searching. For each
record we charted artifact family, MRI sequence and field strength, data source (real vs. simulated), method
class, evaluation metrics, and code/data availability. The core synthesis comprises 16 MRI studies: 11
MRI+DL investigations (dominated by U-Net variants with some recurrent/transformer models) and 5
traditional or hybrid MRI techniques (e.g., motion-robust acquisitions, metal-artifact reduction). Two
additional DL papers in related modalities were retained as context only to discuss transferability and were
excluded from counts, tables, and metrics. DL methods show strong gains in targeted scenarios, while
traditional techniques remain reliable baselines. However, heterogeneity in datasets and protocols, scarce
multicenter validation, and the lack of open, task-standardized benchmarks limit comparability and clinical
generalizability.
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RESUMEN

La correccion de artefactos en imagenes por resonancia magnética (MRI) abarca desde estrategias de
hardware y de adquisicion/reconstruccion hasta enfoques de aprendizaje profundo (DL) en rapida evolucion.
Realizamos una revision de alcance alineada con PRISMA-ScR para mapear qué se corrige, como se evalua
y donde persisten las brechas de evidencia. Se buscaron estudios en PubMed y Scopus durante los ultimos
cinco afios y se complementd con bisqueda manual. Para cada registro se extrajeron la familia de artefacto,
la secuencia y el campo de MRI, la fuente de datos (reales vs. simulados), la clase de método, las métricas
de evaluacion y la disponibilidad de codigo/datos. La sintesis central comprende 16 estudios MRI: 11
investigaciones MRI+DL (dominadas por variantes de U-Net, con algunos modelos recurrentes o basados
en transformadores) y 5 técnicas tradicionales o hibridas (p. ej., adquisiciones robustas al movimiento y
reduccion de artefactos por metal). Dos articulos adicionales de DL en modalidades afines se retuvieron
solo como contexto para discutir transferibilidad y se excluyeron de conteos, tablas y métricas. Los métodos
DL muestran ganancias sélidas en escenarios especificos, mientras que las técnicas tradicionales siguen
siendo lineas base confiables. Sin embargo, la heterogeneidad de conjuntos de datos y protocolos, la escasa
validacion multicéntrica y la ausencia de benchmarks abiertos y estandarizados limitan la comparabilidad y
la generalizacion clinica.

Palabras claves: artefactos, imagenes de resonancia magnética, aprendizaje profundo de maquina,
correccion de imagenes, UNet, CNN.

1. INTRODUCTION

Magnetic resonance imaging (MRI) has become a fundamental tool for medical diagnostics, offering non-
invasive imaging capabilities across a wide range of clinical applications [1]. Its versatility—from
cardiovascular imaging to neurological evaluations—makes MRI indispensable in current clinical practice.
However, the inherent complexity of MR physics and physiology frequently leads to image artifacts that
can compromise diagnostic accuracy [2].

Artifact correction in MRI is challenged by diverse clinical scenarios. In cardiovascular MRI, thoracic
anatomy together with cardiac/respiratory motion and rapid blood flow produce motion- and flow-related
artifacts [2]. In pediatric imaging, long acquisitions and motion artifacts complicate diagnostic quality,
sometimes necessitating sedation or general anesthesia with additional clinical risks and operational impact
[1]. In MR neurography, maintaining signal-to-noise ratio (SNR) while preserving spatial resolution remains
difficult—particularly with acceleration techniques that can amplify noise [3]. In neurological and
musculoskeletal contexts, magnetic susceptibility artifacts—especially with metallic implants—degrade
diagnostic quality and often require specialized mitigation strategies [4]. Despite advances in acceleration
and reconstruction, sustaining diagnostic quality while reducing scan time remains a persistent challenge
[1]. These limitations are accentuated in specialized settings such as deep brain stimulation (DBS) imaging
and low-field MRI, where parameter optimization and artifact correction are even more complex [5,6]. In
cardiovascular applications, balancing temporal resolution with spatial precision continues to be critical [2].

Beyond application-specific issues, there are technical challenges to implementing effective correction
strategies. In deep learning (DL)-based reconstruction, a common obstacle is the limited availability or
access to large, well-curated datasets for training and validation [6]. Moreover, advanced correction
pipelines must balance image quality, reconstruction time, and clinical feasibility. Standardizing techniques
across MRI platforms and field strengths remains difficult [7], and cross-study comparability is further
constrained by heterogeneous protocols, datasets, and metrics.
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Recent studies have reported advances in treating MRI artifacts across clinical domains. In cardiovascular
imaging, several works mitigate motion-related artifacts and sequence-specific distortions [2]. DL-based
reconstructions have shown improvements in image quality and reader confidence, with notable gains also
reported in neurography [3] and in standardized quality-assurance efforts tailored to specific sequences [7].
In post-arthroplasty imaging, metal-artifact-reduction strategies have enabled substantially improved
visualization [4]. Collectively, these developments suggest complementary roles for traditional and DL-
based approaches, each effective within their intended regimes.

Despite recent advances, most solutions remain artifact-specific and lack multicenter validation. We
therefore conduct a PRISMA-ScR—guided scoping review to map MRI artifact-correction methods
(acquisition, reconstruction, post-processing), describe datasets and metrics, and identify evidence gaps for
future clinical translation. Non-MRI studies are reported only as context-only and excluded from the core
synthesis. Despite this progress, important gaps persist. Many solutions target a single artifact type, and few
frameworks address multiple artifacts in a unified manner. Figure 1 illustrates representative imaging
artifacts (primarily MRI). Standardization across acquisition protocols, reconstruction procedures,
platforms, and field strengths remains limited [7]. These gaps motivate a scoping review to map methods,
summarize how they are evaluated, and identify areas needing stronger evidence.

Based on the above, the research question that guided this review is: Which techniques, methods, and models
have been reported for MRI artifact correction, which artifact types and MRI settings do they address, how
are they evaluated (datasets and metrics), and what gaps remain for future research and clinical translation?

We conducted a scoping review following PRISMA-ScR guidance. We searched Scopus and PubMed over
the last five years and complemented database results with hand-searching. Eligible studies were charted by
artifact type, MRI sequence and field strength, data characteristics (real vs. simulated), method family,
metrics, and code/data availability, and synthesized narratively.

Figure 1. Representative artifacts. (a) Motion blur/ghosting in axial brain MRI. (b) Metal streaks / beam
hardening in chest CT (non-MRI example, context only). (c) Rotational motion ghosting and blurring in
brain MRI. (d) Zipper artifact (RF interference/“spike” in k-space) in spine MRI. (e) Magnetic susceptibility
with EPI distortion and signal dropout in diffusion/ADC MRI (skull base).

Figura 1. Artefactos representativos. (a) Desenfoque/ghosting por movimiento en RM cerebral axial. (b)
Estrias por metal / beam-hardening en TC toracica (ejemplo no-RM, solo contextual). (c) Ghosting y
borrosidad por movimiento rotacional en RM cerebral. (d) Artefacto zipper (interferencia RF/“spike” en k-
espacio) en RM de columna. (e) Susceptibilidad magnética con distorsion EPI y caida de sefial en RM de
difusion/ADC (base del craneo).
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2. MATERIALS AND METHODS

We conducted a scoping review following PRISMA-ScR guidance to map methods for MRI artifact
correction across traditional/hybrid and deep learning approaches. Searches were run in Scopus and PubMed
over the last five years and were complemented with hand-searching. We prioritized Scopus and PubMed
due to their broad, curated coverage in engineering and medical sciences, complemented by targeted hand-
searching of core venues. The choice of Scopus and PubMed reflects their editorial robustness (indexed
journals, peer-reviewed proceedings) and continuous updates. Screening followed prespecified
inclusion/exclusion criteria. We charted study attributes and grouped evidence by artifact type and approach
(DL vs. traditional). The core synthesis comprises 18 primary studies (11 MRI+DL, 5 traditional/hybrid
MRI). Two non-MRI papers (LSFM, CCTA) are reported only as contextual background, outside the core
synthesis.

Based on the above, the search Equation (1) is proposed to extract the maximum number of scientific articles
relevant to the objective of the review:

("magnetic resonance imaging" OR MRI) AND (artifact™ OR artefact™) AND
(correct®* OR reduc* OR mitigat* OR remov* OR suppress* OR compensat®)
AND (method* OR technique™ OR algorithm*) )

Time window: 2020 — 2025.

Titles/abstracts were screened against inclusion/exclusion criteria, followed by full-text assessment. Two
reviewers screened independently; disagreements were resolved by discussion. Data were charted using
predefined fields: artifact type, MRI sequence and field strength, data (real vs. simulated), method family,
metrics, code/data availability.

2.1. Inclusion criteria

The inclusion criteria will enable the selection of articles that contribute to achieving the objective of this
review. These criteria are outlined below:

e Primary studies on artifact correction in MRI (acquisition, reconstruction or post-processing).

e English, peer-reviewed journal or conference papers.

e Report methods, data (real/simulated), and metrics.

e Optional context-only: studies in related modalities strictly for translational context and excluded
from core synthesis

2.2. Exclusion criteria

The exclusion criteria will be used to remove articles that are not related to the objective of the review. The
exclusion criteria are presented below:

e Non-MRI primary studies (excluded from core; may appear as context-only).
e Book chapters, theses, non-peer-reviewed items.

e Non-English.

e Outside the specified time window.

e Studies not addressing artifact correction
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Due to the lack of articles on this specific problem, some papers are manually added that are directly related
to the topic but may be in other official databases. Furthermore, consistent filters (date range, document
type, subject area) were applied across both platforms to ensure traceability and comparability. The Scopus—
PubMed combination showed high useful overlap with a low false-positive rate, streamlining full-text
screening—unlike non-domain-specific bibliographic databases that added noise with minimal incremental
yield.

3. RESULTS

In this section, the results of the methodology and the review will be presented, and the most important
findings will be described.

3.1. Methodology

Using the search equation and eligibility criteria, we identified records from Scopus and PubMed and
removed duplicates (n=4). After title/abstract screening, 138 records were excluded. Ten articles underwent
full-text assessment, of which 5 were excluded. Five additional records were found via hand-searching. In
total, 18 records were included in the evidence base. The core synthesis comprises 18 primary studies,
specifically 11 MRI+DL and 5 traditional/hybrid MRI; 2 non-MRI studies (LSFM, CCTA) are presented as
context-only and are not counted in the core. See PRISMA-ScR flow in Figure 2.

Figure 2. Results of the PRISMA-ScR methodology for the artifacts review in MRI.
Figura 2. Resultados de la metodologia PRISMA-ScR para la revision de artefactos en IRM.

| Identification of studies via databases | | Identification of studies via other methods |

—

1]

£ Records removed before

E Records identified from*: o | screening: Records identified from:

E Databases (n = 155) " Duplicate records removed Citaticn searching (n = 10)

I} n=4)

=

[

|

—
Records screened
Inclusion criteria: Records excluded
#  Primary studies on arifact Exclusion criteriz:
comection in MRI (scquisition, Mon-MRI primary studies
reconstruction or post- (esechuded from core: may
processing). _ appear as contexdt-anly).
*  English, per-reviewed joumal +  Book chapters, theses,
or conference papers. — non-peer-reviewed items.
Report methods, data «  Mon-English
= (real/simuisted), and metrics. +  Outside the specified time A
‘e Optional contexd-only: studies in window.
8 ;::E:tmlﬂbt:g";g far Studies not sddressing Reports excluded:
‘3 antluded hom eore mthasis artifact comection Application of exclusion criteria after
_ = (n=138) resd full papers
(n=151) n=5)
Reporis assessed for eligibility
(n=13)
(S
— N
B Studies included in review
2 (n=15) -
S Reports of included studies -
] (n=13)

)

3.2. Review findings

This section presents the findings of the review, which will help identify techniques, methods, and models
used for correcting artifacts in magnetic resonance imaging.

3.2.1. Types of MRI artifacts (causes and mitigation)
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There are different types of MRI artifacts, such as motion, banding, Gibbs ringing, increased noise due to
low SNR, fold-over/aliasing, among others. These artifacts may arise from acquisition setup, k-space
processing, or physiological motion [2], [9-24].

To address some of these problems, physical improvements can be implemented to help prevent such
artifacts [24]. However, some artifacts, such as motion artifacts, are particularly recurrent, as any patient
movement can introduce noise into the image. In such cases, some authors suggest using breathing
techniques or acquiring rapid images [2], [9-24].

On the other hand, many authors have applied statistical methods and Artificial Intelligence techniques to
tackle this issue, either by reconstructing the image in k-space or by denoising the [2], [9-24]. Table 1 shows
the types of artifacts, their causes and the most common way to mitigate them [24].

Table 1. Types of MRI artifacts, causes, and mitigation.

Tabla 1. Tipos de artefactos de resonancia magnética, causas y mitigacion.

Artifact Type of artifact Causes Mitigation Ref
Motion artifacts Spin-echo sequence Pulse sequence An echo train with successive 90° pulses is [2,25]
employed to mitigate motion.
Dark band artifacts bSSFP sequence bSSFP sequence Frequency scouts are utilized to detect off- [2]
resonance signals, TRs are kept short, and
lower magnetic field strengths
Increased noise due to GRE sequence GREE sequence Decreasing the signal bandwidth [2]
low SNR
Fold-over artifacts Cartesian k-space Cartesian k-space Increasing the field of view (fov) or swapping [2]
sampling sampling the phase- and frequency-encoding directions
B0-inhomogeneity Radial k-space Radial k-space Reducing the acceleration factor, employing [2]
artifacts or ecg sampling sampling frequency scouts to locate off-resonance, and
synchronization errors incorporating self-navigation methods
Main magnetic field Magnetic field Non-uniformity of the ~ Selective volumetric shimming and increasing [15]
b0-inhomogeneity inhomogeneity main magnetic field spatial resolution
artifacts
Dielectric artifacts B field Dielectric pads or advanced coil designs [16]
inhomogeneity by
another electric field
Zipper artifacts Technical and Spurious RF Ensuring the scanner room door is closed, [17]
hardware-related contamination verifying the RF coil connection, and
artifacts eliminating external rf sources in the mri room
Zebra artifacts Technical and Interference with k- Widening the field of view or using spin-echo-  [17]
hardware-related space data acquisition based sequences
artifacts
Magnetic Magnetic field Prosthesis, surgical Decreasing the voxel size or echo time, [17,26]
susceptibility/metallic inhomogeneity clips, screws, cardiac increasing the bandwidth, and employing gre
artifacts artifacts implantable electronic ~ sequences

devices

Chemical shift artifacts

Sequence-specific and
tissue heterogeneity
artifacts

Misregistration of fat
and water molecules

Changing the frequency-encoding direction,
reducing the voxel size, or increasing the
bandwidth

(18]
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Off-resonance/dark Magnetic field Magnetic field Minimizing tr, applying higher-order [18,19]
band artifacts inhomogeneity inhomogeneity at shimming, and/or using a frequency scout map
artifacts higher field strengths
using bssfp sequence
Aliasing/wrap-around Magnetic field Small fov Increasing the fov, using saturation bands to [20]
artifacts inhomogeneity suppress interfering signals
artifacts
Lge improper ti Sequence-specific and  Inappropriate selection  Psir imaging or artificial intelligence [21]
tissue heterogeneity of ti in Ige scout techniques are employed to determine the
artifacts appropriate ti
Motion artifacts Patient artifacts Cardiac motion from - Hold respiration, parallel imaging, [9-15],
. . ' the beating heart, single-shot or real time techniques [23],
Tr ansient artifacts in blood flow, respiratory [24], [28-
arterial phase motion and - Short acquisition windows, 30]
involuntary or compressed sensing, variable
voluntary body density k-t, low-rank, simultaneous
movement multiparametric acquisition and
reconstruction techniques
- Al can be used for noise reduction,
resolution enhancement, artifact
removal, and recovery of
undersampled data.
Aliasing artifacts Cardiac and - Radial trajectories, propeller and [31-34]
respiratory motion spiral sampling
- Parallel imaging
- Random undersampling with
model-based sparsity
- Low rank
- Reconstructions or more recently
relying on deep
- Learning based methods
Stripe artifacts Scanner geometry Problems with scanner  Deep learning correction [13,14]

Subject issues

or motion patient

Figure 3 summarizes the MRI artifact landscape and maps each artifact family to the corresponding
mitigation strategies.

3.2.2. MRI datasets used in the reviewed studies

Different datasets have been used for reconstruction or correction of medical images such as FastMRI (300
images 2D slices) [12,34]; dMRI (20 datasets, 300 volumes per each dataset) [13], CCTA (313 patients)
[35], MRI (10 images) [6], LSFM (5860 images) [14], MRI (19 patients) [36], MRI (125 images) [11], MRI
(975 images) [28], MRI (2013 images) [27], Cine CMRI (4000 patients, 10-12 image slices per each patient)
[37,38]; Cine CMRI (512 cardiac MRI image slices) [8,39]; Cine CMRI (5 patients, 5 image slices per each
patient) [8,40]; and Cine CMRI [30].
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Most datasets are private or created by the authors, as this information is sensitive in nature, therefore it
needs licenses of use or create your own dataset. Additionally, due to the complexity of acquisition and the
size of the images, datasets tend to be small. It is complex to have a dataset with artifacts, some authors
have created synthetics artifacts in their dataset [11,12,37].

The following MRI datasets were used in the included studies. In Table 2, we list one dataset per row and
report size as stated by the original sources. Two additional non-MRI datasets—LSFM [14] and CCTA
[35]—were identified; they are excluded from Table 2 as outside the MRI scope but are referenced for
methodological relevance. It can be noted that a wide variety of approaches in image acquisition and the
disparity in the size of each dataset. This feature allows to understand both the limitations and the
generalization potential of the artifact correction methods, as each modality presents specific characteristics
and challenges in the context of image reconstruction and improvement.

Figure 3. MRI artifact landscape and mitigation flow map.

Figura 3. Mapa de flujo de mitigacion y panorama de artefactos de resonancia magnética.
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Table 2. Summary of reported datasets, their modalities, and their sizes.

Tabla 2. Resumen de los conjuntos de datos reportados, su modalidad y sus tamafos.

Dataset Imaging modality Size Reference
NYU fastMRI (knee) Knee MRI (DICOM + k- >10,000 clinical DICOM knee studies and >1,500 fully-
[12]
space) sampled knee MRIs (k-space).

Own dataset Neonatal dMRI ~300 volumes per subject (typical dHCP-style protocol). [13]
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Own dataset Brain MRI (low-field, if n = 10 scans used in the study.
applicable)

Own dataset Brain MRI 19 patients. [36]
Own dataset Brain MRI 125 images. [11]
UK Biobank (CMR) Cine cardiac MRI Program has >48,000 participants imaged; typical 6—12 [37.38]
short-axis slices per subject. ?
ACDC (Automated Cardiac Cine cardiac MRI 150 patients (100 train, 50 test); 6-21 short-axis slices per [8.39]
Diagnosis Challenge) exam. ?
Cedars-Sinai (prospective) Cine cardiac MRI 9 studies, 80 slices total; 8—13 slices per study; 70 for test [8.40]
and 10 for fine-tuning. ’
Own dataset Cine cardiac MRI 65 patients. [30]
ADNI Structural brain MRI Large multi-site repository; order of tens of thousands of [28]
MRI images.
OASIS-3 Structural brain MRI ~1,098 participants and >2,000 MRI sessions (varies by [27,41-
release). 44]

3.2.3. Deep Learning-based methods for correction of artifacts

Recent advances in deep learning have strengthened artifact correction capabilities, showing its usefulness
in mitigating the effects of issues such as patient motion, undersampling artifacts, and slice-to-slice
inconsistencies. This has allowed us to improve the quality of diagnostic images, optimize acquisition times
and precision in clinical environments.

An area of interest in the literature is how deep learning-based methods handle motion-induced artifacts, a
common challenge that affects the reliability and consistency of images in clinical and research applications
[27]. Furthermore, advanced artifact removal techniques, such as methods based on residual neural networks
with attention mechanisms, have shown great potential to address similar problems in other biomedical
imaging modalities, such as light sheet fluorescence microscopy (LSFM) [14], techniques that can be
extended to MRI.

Below are the main approaches organized by the types of artifacts they address:
Motion artifact correction:

A transformer-based architecture presented by [30] uses attention mechanisms to combine local and global
contextual features, achieving accurate motion estimates even in highly accelerated studies. In [10] A
convolutional neural network (CNN)-based method for dynamic contrast-enhanced MRI is introduced,
which combines multi-scale feature extraction and attention mechanisms, achieving a PSNR of 35.212 dB
and an SSIM of 0.974. In [27] uses deep learning-based segmentation methods such as FastSurferCNN,
Kwyk, and ReSeg, which demonstrated greater consistency in brain segmentation in images affected by
motion artifacts compared to traditional tools such as FreeSurfer. On cardiac MRI [8], A recurrent neural
network was developed with bidirectional ConvLSTM branches, allowing effective extraction of spatio-
temporal features and improving image quality in the presence of motion.

Reduction of undersampling artifacts:

In [36] a spatio-temporal approach for radial cardiac MRI is proposed, using a modified U-Net that
outperforms existing 2D and 3D techniques in image quality and reconstruction times. For low-field MR
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images, a residual U-Net combined with data augmentation is presented, which preserves global structure
and fine details even with limited training data [6].

Inconsistencies between slices:

The dStripe method, introduced by [13], corrects intensity variations between slices in diffusion MRI using
a multiplicative field-based approach, improving image quality without introducing bias.

Removal of stripe artifacts:

In [14] presents a method based on residual neural networks with attention modules (Att-ResNet) to remove
streak artifacts in light sheet fluorescence microscopy (LSFM) images. This approach uses an enhanced U-
Net encoder-decoder structure with residual blocks and attention, achieving improvements in PSNR and
SSIM compared to classical and other deep learning-based methods. Although developed for LSFM, this
method has the possibility of being adapted to magnetic resonance imaging and other modalities affected
by stripe artifacts or similar.

Integrated artifact correction:

In [37] proposes an approach for the detection, correction and segmentation of artifacts in cardiac MR
images, transforming the problem into an optimized reconstruction task with a joint loss function. In [9]
presents MARC, a CNN-based artifact reduction method for dynamic liver MRI. This approach improves
image quality without requiring additional scanning time, although it faces generalization challenges
between different sequences.

Specific applications:

In breast diagnosis, [35] develops a decision support system for lesions using a two-stage segmentation
approach, integrating deep learning and traditional techniques for breast cancer detection.

Although advances in deep learning are significant, limitations remain. Among others, the most significant
are:

e Many studies rely on small data sets, which can restrict generalizability ([11,36]).

e Some methods tend to over-smooth motion estimates in images with severe artifacts [6,30].

e Integration of 3D volumetric techniques and multimodal approaches remains a major challenge
[30,42].

o Difficulties in generalization in cases that are outside the standard training conditions [27].

e Reliance on high-quality training data to achieve effective stripe artifact removal, which could limit
its applicability in clinical settings with complex noise or insufficient data [14].

Despite the limitations of the area, the integration of attention mechanisms, spatio-temporal analysis and
architectures such as those used in [8,14,37], show progress in correcting MRI artifacts. Additionally, the
literature shows that deep learning-based methods are not only faster, but also more consistent under
challenging conditions [27], which reinforces its clinical potential. On the other hand, the approach Att-
ResNet [14] opens new possibilities for stripe artifact removal and could be adapted to MR modalities
affected by similar problems. Future studies in this area should focus on expanding data sets, improving
model generalization, and exploring hybrid approaches that combine the best of traditional and deep
learning-based methods.
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architecture, loss function, and metrics used.

Tabla 3. Presenta un resumen de los métodos basados en Deep Learning para la correccion de artefactos,

detallando la arquitectura, funcion de pérdida y métricas usadas.

Artifact/ Librarv/
Method Medical Architecture Loss Metrics Hyperparameters y
Framework
Image
Photometric ~ SSIM 0.85+0.05
Deep Learning Aliasing/  Vit-V-Net and MSE PSNR 40.97:3.65 Optimizer: AdamW
truction [30] CMRI TransMoroh Smoothness NRMSE 0.18+0.08 LR Scheduler: 5x10~* Pytorch
reconstruction ransMorp NRMSE HFEN 1.874+0.77 cheduler:
HFEN Lphoto 5.36+2.86
Wasserstein
Deep Learnin, d:tiair;i e Optimizer: Adam
e s Aliasing/  Recurrent GANbi- S5 18 SSIM 0.88420.047 LR: 10~ Potorch
CMRI directional ConvLSTM PP PSNR 28.51442.210 Epochs: 50 Y
[8] discriminator ..
Mini-batches: 4
Perceptual loss
for generator
A k-space line detection
network Cross-entropy MAE: 0.048 Optimizer: Adam
Deep Learning Motion/ RCNN for MSE PSNR: 28.805 Momentum: 0.9 Pytorch
correction [37] CMRI correction Pixel-wise SSIM: 0.801 LR: 5x107* y
U-Net for image cross entropy SI: 75.819 Activation: ReLU
segmentation
Optimizer: Adam
. . LR: 1073
Deep L‘eammg Motion/ CNN L1 Loss SSIM: 0.91+0.07 Epochs: 100 Keras
correction [9] MRI :
Batch size: 64
Activation: ReLU
Optimizer: Adam
Deep Learning Motion/ U-NET/CNN/ MS-SSIM PSNR: 35.21+3.321 LR: 1073 Pytorch
correction [10] MRI AttentionBlock Loss SSIM: 0.974+0.015 Epochs: 30 4
Activation: ReLU
Optimizer: Adam
Deep Learning Motion/ SSIM: 0.957+0.025 LR: 107
correction [11]  MRI DRN-DCMB MSE ISNR: 4.44+1.45 Epochs: 50 Tensorflow
Mini batches: 50
Activation: ReLU
PSNR: 40.376 .
. . Optimizer: SGD
Deep L‘earnmg Unknown/ U-NET/CNN L2 Error SSIM: 0.954 LR: 105
correction [36] MRI HPSI: 0.989 Activation: ReLU
NRMSE: 0.079 ctivation: Be
. Optimizer: Adam
Deep Learning
. . DTI Epochs: 500
correction- Stripe/ dIMRICNN MC SURE MT CSD Triangular LRS Pytorch

reconstruction [13]

Activation: ReLU
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PSNR: 26.52+2.22

Optimizer: RMSProp

. . -3
Der‘:p It“iei“[lg]lg [l\j[r;{klnowm U-NET MSE SSIM 0.80+0.02 ;R‘ 3}1",120 00 ;e‘r‘zorﬂow
correctio NRMSE: 0.07+0.03 Pochs: eras
Activation: ReLU
SSIM: 0.991.82 Sl‘;t,“lnézjr: Adam
Deep Learning Motion/ kLDNet based in U- PSNR: 44.82+6.44 e
correction [12]  MRI NET LI-SSIMLOSS 1151 97 3345 56 Epochs: 4200 Pytorch
Accuracy: 97.06 Batch Size: 4
¥ 7 Activation: ReLU
AIR Recon DL by
GE Healthcar§ MRI CNN
(enhance quality)
[45]
Optimizer: RMSProp
. Focal Loss LR: 107*
cD:rig:lgzilnErzlg] MRI Iljfsst;irferCNN Generalised EIS)C Batch Size: 8 vols. Tensorflow
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For completeness, we note two non-MRI deep-learning entries that are excluded from Table 3 to keep it
MRI-specific but remain cited for methodological affinity. LSFM [14] addresses stripe artifacts with a U-
Net + CBAM model trained in TensorFlow/Keras using MAE and content loss (Adam; ~300 epochs, batch
size 2), reporting MAE 6.06 £ 1.50, PSNR 30.56 + 1.85, and SSIM 0.92 + 0.05. CCTA [35] targets motion
with a Pix2Pix/U-Net pipeline (MATLAB), reporting PSNR 26.1, SSIM 0.86, DSC 0.783, and HD 4.47.
These non-MRI results are referenced only in the text and are not counted in the core synthesis.

3.2.4. Other type of methods for correction of artifacts

Other methods for mitigating artifacts in medical images can be classified into two groups: hardware
(focused on physically modifying the acquisition environment) and software (programs for image
correction) (see Table 4).

Below are some approaches organized by the types of artifacts they address:
Hardware Related Spatial Distortions (HRSD):

These distortions vary depending on the scanner configuration and the intensity of the magnetic field,
directly affecting the spatial precision of the images. The IR-PETRA (Inversion Recovery Point Encoding
Time Reduction with Radial Acquisition) sequence exhibits variable levels of HRSD. On 3.0 T scanners,
adequate spatial precision was achieved without the need for correction algorithms. On 1.5 T scanners,
distortion correction techniques were required to achieve comparable levels of accuracy [25]. In this
scenario, adjusting acquisition strategies based on hardware minimizes distortions.

Motion-related artifact:

Patient movement remains a major source of artifacts. In this sub-category of work, various strategies have
been developed to mitigate its impact:

e Dynamic abdominal MRI with contrast: A study in 325 patients demonstrated that image quality
directly correlates with the degree of abdominal movement, evaluated by respiratory wave analysis.
Images without abdominal movement showed no artifacts, highlighting the importance of
controlling patient movement [28].
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Cranial magnetic resonance imaging: The use of the PROPELLER (Periodically Rotated
Overlapping Parallel Lines with Enhanced Reconstruction) technique has been reported. This
approach combines redundant data from multiple acquisition angles to reduce motion artifacts. In
[32], Using a "pause" function during acquisition was shown to significantly improve image quality
by repositioning the object, achieving increases in SSIM from 0.52 to 0.80.

Non-rigid motion correction (NRC): In the field of cardiac resonance, NRC has been shown to be
superior to translational techniques, improving image quality and contrasts between cardiac tissues
under free breathing conditions. Furthermore, it allowed a more precise quantification of late
enhancement masses, which could significantly benefit the diagnosis of cardiac pathologies. [29].

Impact of metallic implants on image quality:

Artifacts generated by metallic implants, such as those made of titanium or cobalt-to-chromium, are still a
challenge. Various studies have evaluated how to mitigate these effects:

Polarization of the B1 field: In hip MRI [26], was shown that at 1.5 T, circular polarization was
effective in reducing the size of acetabular cup artifacts and femoral necrolysis. At 3.0 T, elliptical
polarization outperformed 1.5 T techniques in the femoral stem region, achieving significant
reductions in artifacts.

Advanced techniques such as HBW-TSE and SEMAC: These methodologies have improved the
correction of metallic artifacts, highlighting the complex interactions between magnetic field
strength, RF pulse polarization, and implant material. This could indicate that different MRI
techniques should be considered depending on the type of implant and the anatomical region of
interest [26].

Despite advances in traditional techniques, several important challenges remain. Hardware-related
distortions depend significantly on scanner settings, requiring custom adjustments to ensure adequate
accuracy. Patient movement artifacts are difficult to predict in pediatric populations or critically ill patients,
where movement control is limited. In the case of metallic implants, the effectiveness of current techniques
is influenced by the type of implant and the anatomical region, which limits their general applicability.

Although techniques such as NRC and PROPELLER have improved image quality, their effectiveness still
needs additional validation in larger populations to ensure robustness and generalizability.

Directions for future work in this field should be considered: validation of these techniques in broader
populations with greater diversity of clinical conditions. The integration of hybrid approaches that combine
traditional and advanced strategies, such as deep learning, to optimize artifact correction. Exploring
automated methods to customize hardware configurations and acquisition parameters to patient needs.

Table 4. Artifact correction methods based on their type (hardware or software).

Tabla 4. Métodos de correccion de artefactos basado en su tipo (hardware o software).

Medical Image Method Type of method
MRI IR-PETRA [25] Hardware
MRI SEMAC [26] Hardware
MRI PROPELLER [32] Software

CMRI NRC (non-rigid motion correction) [29]  Software




PROSPECTIVAVOL 24 N1

4. DISCUSSION
4.1 General aspects

Leveraging Scopus and PubMed ensured editorial quality and domain-wide coverage while minimizing
dispersion across less pertinent databases—unlike non-domain-specific sources that tended to increase noise
with minimal incremental yield.

Artifact removal in magnetic resonance imaging (MRI) requires the integration of diverse efforts. From
acquisition-time strategies (e.g., SEMAC, IR-PETRA, PROPELLER) to reconstruction/post-processing
approaches (e.g., iterative SENSE), each strategy responds to specific clinical challenges, such as the
presence of metallic implants or the control of motion artifacts. However, in clinical practice, the availability
of resources and the heterogeneity of acquisition protocols require a constant search for adaptable methods
that offer good results in different circumstances. As a response to this, the community has explored the
incorporation of deep learning solutions, often artifact-specific, with some early attempts at multi-artifact
correction, but also pose their own challenges such as the costs associated with computing for training large
models, as well as the availability of data in sufficient quantities to infer patterns that allow generalization.
These observations reflect the core synthesis of primary studies, with two non-MRI papers cited only as
contextual background.

From the review, we identified a typical approach sequence (Figure 4): MRI data are started, which, after
preprocessing and labeling, are then transferred to post-acquisition correction methods—both
reconstruction/physics and deep learning and hybrid approaches. A stepwise evaluation combining image
quality metrics with task- and reader-study-level metrics is then applied. Generalization across sequences,
fields, and centers is then verified, along with safeguards and reporting; all of this converges in clinical
preparation.

Figure 4. Typical evaluation and reporting workflow for MRI artifact correction.

Figura 4. Secuencia tipica de evaluacion y reporte en la correccion de artefactos en MRI.
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Traditional techniques, both hardware and software, usually offer great robustness in specific scenarios.
Methods such as SEMAC minimize metal-induced distortion, while PROPELLER effectively mitigates
motion artifacts in brain sequences. However, these systems do not usually cover all the artifacts that may
arise (aliasing, stripes).

On the other hand, deep learning-based methods stand out for their ability to process large volumes of data
and learn complex noise or distortion patterns. In recent studies, they have achieved significant increases in
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metrics such as PSNR and SSIM, demonstrating high effectiveness against motion artifacts and aliasing.
However, they still face limitations related to the need for large quality databases and the difficulty of
generalizing to different populations and acquisition parameters.

Some of the challenges that remain:

- Scarcity and variability of datasets: many studies use small image sets or simulate artifacts, which
can limit the external validity of the results and the ability of the models to deal with exceptional
clinical cases.

- Multicenter clinical validation: most of the advances have been evaluated in controlled
environments; Collaborative studies involving hospitals with different MRI equipment and
protocols are lacking.

- Computational cost and technical expertise: Training deep neural networks requires specialized
hardware and trained personnel, aspects that may not be available in all health centers.

- Standardization and integration: The existence of various acquisition methods and parameters
makes it difficult to adopt a standard for artifact correction. Therefore, hybrid approaches are sought
that combine the robustness of traditional techniques with the adaptability of machine learning
techniques.

4.2 The use of deep learning methods

In this context, architectures ranging from conventional convolutional neural networks (CNN) to attention-
based approaches (transformers), including U-Net and GAN, have been studied. In general, U-Net and its
variants have shown high versatility for the correction of local artifacts such as streaks or aliasing, while
attention-based models seem more promising when capturing broader correlations, typical of extensive
motion deformations, is required.

Regarding quality metrics, PSNR and SSIM are the image quality metrics that predominate in the literature,
measuring residual noise intensity and structural similarity, respectively. Across the included MRI studies,
SSIM = 0.95-0.97 and PSNR = 35-45 dB are commonly reported under study-specific settings, indicating
notable improvements in final quality. Even so, the comparison of results between studies can be affected
by the use of different acquisition protocols, anatomical regions, and training configurations.

Regarding cost functions and optimization methods, they commonly use functions such as MSE, MAE or
MS-SSIM. The Adam optimizer and its variants stand out for their stability in the search for minimums. It
is evident that given the availability of data, it is necessary to focus on the adjustment of hyperparameters
such as batch size, learning rate, number of epochs. When the training set was scarce, the literature showed
that they could resort to the generation of synthetic artifacts or data augmentation techniques, in order to
strengthen the generalization capacity.

In this particular context, limitations still persist:
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- Dependence on large volumes of data: the lack of extensive and heterogeneous databases remains a
problem, especially in applications where artifacts have low clinical prevalence or there are high privacy
requirements.

- Possible suppression of pathological signals: A critical aspect of artifact correction using neural
networks is the possibility that noise or artifact removal may inadvertently suppress some of the relevant
pathological signals. For example, low-contrast lesions or subtle alterations in signal intensity could be
altered or smoothed, negatively impacting the diagnosis. In this context, it is important to have
comprehensive clinical validations and evaluation methods that involve both image quality metrics
(PSNR, SSIM) and qualitative assessments by experts.

- Computational requirements: the complexity of deep neural networks increases the cost of training and
inference, which makes mass adoption difficult in centers with limited resources. The availability and
access to technological infrastructure is increasing, however, thinking about the construction of large
foundational models for artifact correction maximizes the limitations in this aspect.

- Generalization to different sequences and magnets: models trained with a specific type of sequence and
magnetic field may not work optimally in different contexts, they are very limited to biotype patterns,
technology and specific protocols. Therefore, it is still characteristic to find works that try to correct
artifacts in very particular conditions and domains.

- Correlation with improvements in real clinical practice: It is common in the literature to report
significant improvements in image quality metrics such as PSNR and SSIM. However, further studies
are still needed to establish the correlation between improvements in the metrics and improvements in
real clinical practice. The extent to which a more artifact-free image impacts a more accurate diagnosis
and, ultimately, favorable clinical outcomes must be evaluated. Several authors have suggested that, in
addition to quantitative metrics, it is essential to include reading studies or validations with experienced
radiologists to determine whether artifact suppression positively influences the identification of lesions
and the establishment of therapeutic measures.

The field of deep learning is one of the most active fields of science. The research and development of new
models is dizzying, in this scenario the possible trends will depend on these same dynamics in the sense that
new mathematical theories or architectures could limit the initiatives to develop models with current
architectures. However, we can establish in general terms:

- Hybrid models: Combining traditional techniques (SEMAC, PROPELLER) with neural network
architectures could allow for more robust corrections that are less dependent on extensive data.

- Creating large repositories: advancing initiatives that bring together images from multiple centers with
different protocols and populations, ensuring anonymization and compliance with ethical aspects, in
massive quantities, will allow the idea of building large foundational models for artifact correction, or
at least moving in the direction of generalization between modalities.

- Improved explainability: Interpretability methods aimed at helping radiologists understand the
transformation that the network performs on the image, reducing diagnostic uncertainty, are desirable
in this field as in any other AI application domain. However, the community has not yet developed
general extensible methods between architectures. It seems that a trade-off must be made between the
benefits of these techniques and the loss of explainability of their results.
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- Integration of attention architectures: The incorporation of mechanisms that optimize self-attention,
such as efficient attention mechanisms (e.g., windowed or linear attention), is emerging as a promising
way to capture global correlations in the image and correct artifacts in dynamic or long sequences.

4.3 Ethical considerations

Although the studies analyzed report the use of anonymized data to train deep learning models, the ethical
and legal implications remain an aspect to consider. As a scoping review, we did not access individual-level
data; we summarized how primary studies reported consent/approval and de-identification. Privacy
regulations, such as those in Europe [46] and the United States [47], require strengthening data protection
and transparency in its use. This aspect must be considered so that the anonymization process does not affect
the quality and representativeness of the data in the construction of unbiased models that generalize
appropriately.

In this work, we recognize these ethical implications; however, since the focus was on the review of artifact
correction methods, the legal dimension was not explored in depth.

4.4 Study limitations

An important limitation of this study is the small number of articles finally included. This aspect is
explained, in large part, by the nature of most works related to artifacts from the physical perspective of the
acquisition process, however, our focus was on the correction of artifacts once they were generated. The
five-year window and the use of Scopus/PubMed (plus hand-searching) may have missed earlier or non-
indexed works. Although other databases were not included, the robustness of Scopus and PubMed,
complemented by targeted hand-searching, mitigated the risk of missing relevant studies. As a scoping
synthesis, we did not perform a quantitative meta-analysis or a formal risk-of-bias assessment; heterogeneity
in datasets, sequences, and metrics precluded pooling.

5. CONCLUSIONS

Artifact correction in MRI benefits from both traditional approaches, such as hardware-oriented solutions
and software techniques, and DL methods show strong gains for specific artifact types and settings; broader
multi-artifact generalization remains an open goal. However, deep learning approaches critically rely on
large-scale, high-quality data sets and specialized computational resources, while traditional solutions,
although more specific, show robust performance in well-defined scenarios.

Recent studies indicate that hybrid strategies, combining physical adjustments with deep neural networks,
improve artifact mitigation while generally preserving diagnostic details. Still, limitations remain, including
the risk of removing or altering true pathological signals due to artifact-removal modifications, highlighting
the need for explainable models and rigorous clinical validation. Data sharing practices must also improve
to ensure diverse training sets and broader applicability of these techniques. Ultimately, the integration of
traditional and Al-based solutions, along with consistent multi-center assessments and transparent
correction processes, appears to be the most promising avenue for advancing MRI imaging quality and
diagnostic accuracy.
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