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ABSTRACT 

Artifact correction in magnetic resonance imaging (MRI) spans from acquisition/reconstruction and 

hardware strategies to rapidly evolving deep learning (DL) approaches. We conducted a PRISMA-ScR–

aligned scoping review to map what is corrected, how it is evaluated, and where evidence gaps persist. 

PubMed and Scopus were searched over the last five years and complemented by hand-searching. For each 

record we charted artifact family, MRI sequence and field strength, data source (real vs. simulated), method 

class, evaluation metrics, and code/data availability. The core synthesis comprises 16 MRI studies: 11 

MRI+DL investigations (dominated by U-Net variants with some recurrent/transformer models) and 5 

traditional or hybrid MRI techniques (e.g., motion-robust acquisitions, metal-artifact reduction). Two 

additional DL papers in related modalities were retained as context only to discuss transferability and were 

excluded from counts, tables, and metrics. DL methods show strong gains in targeted scenarios, while 

traditional techniques remain reliable baselines. However, heterogeneity in datasets and protocols, scarce 

multicenter validation, and the lack of open, task-standardized benchmarks limit comparability and clinical 

generalizability. 
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RESUMEN 

La corrección de artefactos en imágenes por resonancia magnética (MRI) abarca desde estrategias de 

hardware y de adquisición/reconstrucción hasta enfoques de aprendizaje profundo (DL) en rápida evolución. 

Realizamos una revisión de alcance alineada con PRISMA-ScR para mapear qué se corrige, cómo se evalúa 

y dónde persisten las brechas de evidencia. Se buscaron estudios en PubMed y Scopus durante los últimos 

cinco años y se complementó con búsqueda manual. Para cada registro se extrajeron la familia de artefacto, 

la secuencia y el campo de MRI, la fuente de datos (reales vs. simulados), la clase de método, las métricas 

de evaluación y la disponibilidad de código/datos. La síntesis central comprende 16 estudios MRI: 11 

investigaciones MRI+DL (dominadas por variantes de U-Net, con algunos modelos recurrentes o basados 

en transformadores) y 5 técnicas tradicionales o híbridas (p. ej., adquisiciones robustas al movimiento y 

reducción de artefactos por metal). Dos artículos adicionales de DL en modalidades afines se retuvieron 

solo como contexto para discutir transferibilidad y se excluyeron de conteos, tablas y métricas. Los métodos 

DL muestran ganancias sólidas en escenarios específicos, mientras que las técnicas tradicionales siguen 

siendo líneas base confiables. Sin embargo, la heterogeneidad de conjuntos de datos y protocolos, la escasa 

validación multicéntrica y la ausencia de benchmarks abiertos y estandarizados limitan la comparabilidad y 

la generalización clínica. 

Palabras claves: artefactos, imágenes de resonancia magnética, aprendizaje profundo de máquina, 

corrección de imágenes, UNet, CNN. 

1. INTRODUCTION 

Magnetic resonance imaging (MRI) has become a fundamental tool for medical diagnostics, offering non-

invasive imaging capabilities across a wide range of clinical applications [1]. Its versatility—from 

cardiovascular imaging to neurological evaluations—makes MRI indispensable in current clinical practice. 

However, the inherent complexity of MR physics and physiology frequently leads to image artifacts that 

can compromise diagnostic accuracy [2]. 

Artifact correction in MRI is challenged by diverse clinical scenarios. In cardiovascular MRI, thoracic 

anatomy together with cardiac/respiratory motion and rapid blood flow produce motion- and flow-related 

artifacts [2]. In pediatric imaging, long acquisitions and motion artifacts complicate diagnostic quality, 

sometimes necessitating sedation or general anesthesia with additional clinical risks and operational impact 

[1]. In MR neurography, maintaining signal-to-noise ratio (SNR) while preserving spatial resolution remains 

difficult—particularly with acceleration techniques that can amplify noise [3]. In neurological and 

musculoskeletal contexts, magnetic susceptibility artifacts—especially with metallic implants—degrade 

diagnostic quality and often require specialized mitigation strategies [4]. Despite advances in acceleration 

and reconstruction, sustaining diagnostic quality while reducing scan time remains a persistent challenge 

[1]. These limitations are accentuated in specialized settings such as deep brain stimulation (DBS) imaging 

and low-field MRI, where parameter optimization and artifact correction are even more complex [5,6]. In 

cardiovascular applications, balancing temporal resolution with spatial precision continues to be critical [2]. 

Beyond application-specific issues, there are technical challenges to implementing effective correction 

strategies. In deep learning (DL)–based reconstruction, a common obstacle is the limited availability or 

access to large, well-curated datasets for training and validation [6]. Moreover, advanced correction 

pipelines must balance image quality, reconstruction time, and clinical feasibility. Standardizing techniques 

across MRI platforms and field strengths remains difficult [7], and cross-study comparability is further 

constrained by heterogeneous protocols, datasets, and metrics. 
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Recent studies have reported advances in treating MRI artifacts across clinical domains. In cardiovascular 

imaging, several works mitigate motion-related artifacts and sequence-specific distortions [2]. DL-based 

reconstructions have shown improvements in image quality and reader confidence, with notable gains also 

reported in neurography [3] and in standardized quality-assurance efforts tailored to specific sequences [7]. 

In post-arthroplasty imaging, metal-artifact-reduction strategies have enabled substantially improved 

visualization [4]. Collectively, these developments suggest complementary roles for traditional and DL-

based approaches, each effective within their intended regimes. 

Despite recent advances, most solutions remain artifact-specific and lack multicenter validation. We 

therefore conduct a PRISMA-ScR–guided scoping review to map MRI artifact-correction methods 

(acquisition, reconstruction, post-processing), describe datasets and metrics, and identify evidence gaps for 

future clinical translation. Non-MRI studies are reported only as context-only and excluded from the core 

synthesis. Despite this progress, important gaps persist. Many solutions target a single artifact type, and few 

frameworks address multiple artifacts in a unified manner. Figure 1 illustrates representative imaging 

artifacts (primarily MRI). Standardization across acquisition protocols, reconstruction procedures, 

platforms, and field strengths remains limited [7]. These gaps motivate a scoping review to map methods, 

summarize how they are evaluated, and identify areas needing stronger evidence. 

Based on the above, the research question that guided this review is: Which techniques, methods, and models 

have been reported for MRI artifact correction, which artifact types and MRI settings do they address, how 

are they evaluated (datasets and metrics), and what gaps remain for future research and clinical translation? 

We conducted a scoping review following PRISMA-ScR guidance. We searched Scopus and PubMed over 

the last five years and complemented database results with hand-searching. Eligible studies were charted by 

artifact type, MRI sequence and field strength, data characteristics (real vs. simulated), method family, 

metrics, and code/data availability, and synthesized narratively. 

Figure 1. Representative artifacts. (a) Motion blur/ghosting in axial brain MRI. (b) Metal streaks / beam 

hardening in chest CT (non-MRI example, context only). (c) Rotational motion ghosting and blurring in 

brain MRI. (d) Zipper artifact (RF interference/“spike” in k-space) in spine MRI. (e) Magnetic susceptibility 

with EPI distortion and signal dropout in diffusion/ADC MRI (skull base). 

Figura 1. Artefactos representativos. (a) Desenfoque/ghosting por movimiento en RM cerebral axial. (b) 

Estrías por metal / beam-hardening en TC torácica (ejemplo no-RM, solo contextual). (c) Ghosting y 

borrosidad por movimiento rotacional en RM cerebral. (d) Artefacto zipper (interferencia RF/“spike” en k-

espacio) en RM de columna. (e) Susceptibilidad magnética con distorsión EPI y caída de señal en RM de 

difusión/ADC (base del cráneo). 

     

a) b) c) d) e) 
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2. MATERIALS AND METHODS 

We conducted a scoping review following PRISMA-ScR guidance to map methods for MRI artifact 

correction across traditional/hybrid and deep learning approaches. Searches were run in Scopus and PubMed 

over the last five years and were complemented with hand-searching. We prioritized Scopus and PubMed 

due to their broad, curated coverage in engineering and medical sciences, complemented by targeted hand-

searching of core venues. The choice of Scopus and PubMed reflects their editorial robustness (indexed 

journals, peer-reviewed proceedings) and continuous updates. Screening followed prespecified 

inclusion/exclusion criteria. We charted study attributes and grouped evidence by artifact type and approach 

(DL vs. traditional). The core synthesis comprises 18 primary studies (11 MRI+DL, 5 traditional/hybrid 

MRI). Two non-MRI papers (LSFM, CCTA) are reported only as contextual background, outside the core 

synthesis.  

Based on the above, the search Equation (1) is proposed to extract the maximum number of scientific articles 

relevant to the objective of the review: 

("magnetic resonance imaging" OR MRI) AND (artifact* OR artefact*) AND 

(correct* OR reduc* OR mitigat* OR remov* OR suppress* OR compensat*) 

AND (method* OR technique* OR algorithm*) 

Time window: 2020 – 2025. 

(1) 

Titles/abstracts were screened against inclusion/exclusion criteria, followed by full-text assessment. Two 

reviewers screened independently; disagreements were resolved by discussion. Data were charted using 

predefined fields: artifact type, MRI sequence and field strength, data (real vs. simulated), method family, 

metrics, code/data availability. 

2.1. Inclusion criteria 

The inclusion criteria will enable the selection of articles that contribute to achieving the objective of this 

review. These criteria are outlined below: 

• Primary studies on artifact correction in MRI (acquisition, reconstruction or post-processing). 

• English, peer-reviewed journal or conference papers. 

• Report methods, data (real/simulated), and metrics. 

• Optional context-only: studies in related modalities strictly for translational context and excluded 

from core synthesis 

 

2.2. Exclusion criteria 

The exclusion criteria will be used to remove articles that are not related to the objective of the review. The 

exclusion criteria are presented below: 

• Non-MRI primary studies (excluded from core; may appear as context-only). 

• Book chapters, theses, non-peer-reviewed items. 

• Non-English. 

• Outside the specified time window. 

• Studies not addressing artifact correction 
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Due to the lack of articles on this specific problem, some papers are manually added that are directly related 

to the topic but may be in other official databases. Furthermore, consistent filters (date range, document 

type, subject area) were applied across both platforms to ensure traceability and comparability. The Scopus–

PubMed combination showed high useful overlap with a low false-positive rate, streamlining full-text 

screening—unlike non-domain-specific bibliographic databases that added noise with minimal incremental 

yield. 

3. RESULTS 

In this section, the results of the methodology and the review will be presented, and the most important 

findings will be described. 

 3.1. Methodology 

Using the search equation and eligibility criteria, we identified records from Scopus and PubMed and 

removed duplicates (n=4). After title/abstract screening, 138 records were excluded. Ten articles underwent 

full-text assessment, of which 5 were excluded. Five additional records were found via hand-searching. In 

total, 18 records were included in the evidence base. The core synthesis comprises 18 primary studies, 

specifically 11 MRI+DL and 5 traditional/hybrid MRI; 2 non-MRI studies (LSFM, CCTA) are presented as 

context-only and are not counted in the core. See PRISMA-ScR flow in Figure 2. 

Figure 2. Results of the PRISMA-ScR methodology for the artifacts review in MRI. 

Figura 2. Resultados de la metodología PRISMA-ScR para la revisión de artefactos en IRM. 

 
3.2. Review findings 

This section presents the findings of the review, which will help identify techniques, methods, and models 

used for correcting artifacts in magnetic resonance imaging. 

3.2.1. Types of MRI artifacts (causes and mitigation) 
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There are different types of MRI artifacts, such as motion, banding, Gibbs ringing, increased noise due to 

low SNR, fold-over/aliasing, among others. These artifacts may arise from acquisition setup, k-space 

processing, or physiological motion [2], [9-24]. 

To address some of these problems, physical improvements can be implemented to help prevent such 

artifacts [24]. However, some artifacts, such as motion artifacts, are particularly recurrent, as any patient 

movement can introduce noise into the image. In such cases, some authors suggest using breathing 

techniques or acquiring rapid images [2], [9-24]. 

On the other hand, many authors have applied statistical methods and Artificial Intelligence techniques to 

tackle this issue, either by reconstructing the image in k-space or by denoising the [2], [9-24]. Table 1 shows 

the types of artifacts, their causes and the most common way to mitigate them [24].   

Table 1. Types of MRI artifacts, causes, and mitigation. 

Tabla 1. Tipos de artefactos de resonancia magnética, causas y mitigación. 

 
Artifact Type of artifact Causes Mitigation Ref 

Motion artifacts  Spin-echo sequence Pulse sequence An echo train with successive 90° pulses is 

employed to mitigate motion. 

[2,25] 

Dark band artifacts bSSFP sequence bSSFP sequence Frequency scouts are utilized to detect off-

resonance signals, TRs are kept short, and 

lower magnetic field strengths 

[2] 

Increased noise due to 

low SNR 

GRE sequence GREE sequence Decreasing the signal bandwidth [2] 

Fold-over artifacts Cartesian k-space 

sampling 

Cartesian k-space 

sampling 

Increasing the field of view (fov) or swapping 

the phase- and frequency-encoding directions 

[2] 

B0-inhomogeneity 

artifacts or ecg 

synchronization errors 

Radial k-space 

sampling 

Radial k-space 

sampling 

Reducing the acceleration factor, employing 

frequency scouts to locate off-resonance, and 

incorporating self-navigation methods 

[2] 

Main magnetic field 

b0-inhomogeneity 

Magnetic field 

inhomogeneity 

artifacts 

Non-uniformity of the 

main magnetic field 

Selective volumetric shimming and increasing 

spatial resolution 

[15] 

Dielectric artifacts  B1 field 

inhomogeneity by 

another electric field 

Dielectric pads or advanced coil designs [16] 

Zipper artifacts Technical and 

hardware‐related 

artifacts 

Spurious RF 

contamination 

Ensuring the scanner room door is closed, 

verifying the RF coil connection, and 

eliminating external rf sources in the mri room 

[17] 

Zebra artifacts Technical and 

hardware‐related 

artifacts 

Interference with k-

space data acquisition 

Widening the field of view or using spin-echo-

based sequences 

[17] 

Magnetic 

susceptibility/metallic 

artifacts 

Magnetic field 

inhomogeneity 

artifacts 

Prosthesis, surgical 

clips, screws, cardiac 

implantable electronic 

devices 

Decreasing the voxel size or echo time, 

increasing the bandwidth, and employing gre 

sequences 

[17,26] 

Chemical shift artifacts Sequence‐specific and 

tissue heterogeneity 

artifacts 

Misregistration of fat 

and water molecules 

Changing the frequency-encoding direction, 

reducing the voxel size, or increasing the 

bandwidth 

[18] 
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Off-resonance/dark 

band artifacts 

Magnetic field 

inhomogeneity 

artifacts 

Magnetic field 

inhomogeneity at 

higher field strengths 

using bssfp sequence 

Minimizing tr, applying higher-order 

shimming, and/or using a frequency scout map 

[18,19] 

Aliasing/wrap-around 

artifacts 

Magnetic field 

inhomogeneity 

artifacts 

Small fov Increasing the fov, using saturation bands to 

suppress interfering signals 

[20] 

Lge improper ti  Sequence‐specific and 

tissue heterogeneity 

artifacts 

Inappropriate selection 

of ti in lge scout 

Psir imaging or artificial intelligence 

techniques are employed to determine the 

appropriate ti 

[21] 

Motion artifacts Patient artifacts 

Transient artifacts in 

arterial phase 

Cardiac motion from 

the beating heart, 

blood flow, respiratory 

motion and 

involuntary or 

voluntary body 

movement 

- Hold respiration, parallel imaging, 

single-shot or real time techniques 

- Short acquisition windows, 

compressed sensing, variable 

density k-t, low-rank, simultaneous 

multiparametric acquisition and 

reconstruction techniques 

- Ai can be used for noise reduction, 

resolution enhancement, artifact 

removal, and recovery of 

undersampled data. 

 

[9-15], 

[23], 

[24], [28-

30] 

Aliasing artifacts  Cardiac and 

respiratory motion 
- Radial trajectories, propeller and 

spiral sampling 

- Parallel imaging 

- Random undersampling with 

model-based sparsity 

- Low rank 

- Reconstructions or more recently 

relying on deep  

- Learning based methods 

[31-34] 

Stripe artifacts Scanner geometry 

Subject issues 

Problems with scanner 

or motion patient 

Deep learning correction [13,14] 

 

Figure 3 summarizes the MRI artifact landscape and maps each artifact family to the corresponding 

mitigation strategies. 

3.2.2. MRI datasets used in the reviewed studies 

Different datasets have been used for reconstruction or correction of medical images such as FastMRI (300 

images 2D slices) [12,34]; dMRI (20 datasets, 300 volumes per each dataset) [13], CCTA (313 patients) 

[35], MRI (10 images) [6], LSFM (5860 images) [14], MRI (19 patients) [36], MRI (125 images) [11], MRI 

(975 images) [28], MRI (2013 images) [27], Cine CMRI (4000 patients, 10-12 image slices per each patient) 

[37,38]; Cine CMRI (512 cardiac MRI image slices) [8,39]; Cine CMRI (5 patients, 5 image slices per each 

patient) [8,40]; and Cine CMRI [30]. 
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Most datasets are private or created by the authors, as this information is sensitive in nature, therefore it 

needs licenses of use or create your own dataset. Additionally, due to the complexity of acquisition and the 

size of the images, datasets tend to be small. It is complex to have a dataset with artifacts, some authors 

have created synthetics artifacts in their dataset [11,12,37].  

The following MRI datasets were used in the included studies. In Table 2, we list one dataset per row and 

report size as stated by the original sources. Two additional non-MRI datasets—LSFM [14] and CCTA 

[35]—were identified; they are excluded from Table 2 as outside the MRI scope but are referenced for 

methodological relevance. It can be noted that a wide variety of approaches in image acquisition and the 

disparity in the size of each dataset. This feature allows to understand both the limitations and the 

generalization potential of the artifact correction methods, as each modality presents specific characteristics 

and challenges in the context of image reconstruction and improvement. 

Figure 3. MRI artifact landscape and mitigation flow map. 

Figura 3. Mapa de flujo de mitigación y panorama de artefactos de resonancia magnética. 

 

 

Table 2. Summary of reported datasets, their modalities, and their sizes. 

Tabla 2. Resumen de los conjuntos de datos reportados, su modalidad y sus tamaños. 

Dataset Imaging modality Size  Reference 

NYU fastMRI (knee) Knee MRI (DICOM + k-

space) 

>10,000 clinical DICOM knee studies and >1,500 fully-

sampled knee MRIs (k-space).  
[12] 

Own dataset Neonatal dMRI ~300 volumes per subject (typical dHCP-style protocol).  [13] 
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Own dataset Brain MRI (low-field, if 

applicable) 

n = 10 scans used in the study. 
[6] 

Own dataset Brain MRI 19 patients. [36] 

Own dataset Brain MRI 125 images.  [11] 

UK Biobank (CMR) Cine cardiac MRI Program has >48,000 participants imaged; typical 6–12 

short-axis slices per subject. 
[37,38] 

ACDC (Automated Cardiac 

Diagnosis Challenge) 

Cine cardiac MRI 150 patients (100 train, 50 test); 6–21 short-axis slices per 

exam. 
[8,39] 

Cedars-Sinai (prospective) Cine cardiac MRI 9 studies, 80 slices total; 8–13 slices per study; 70 for test 

and 10 for fine-tuning. 
[8,40] 

Own dataset Cine cardiac MRI 65 patients. [30] 

ADNI Structural brain MRI Large multi-site repository; order of tens of thousands of 

MRI images.  

[28] 

OASIS-3 Structural brain MRI ~1,098 participants and >2,000 MRI sessions (varies by 

release). 

[27,41–

44] 

3.2.3. Deep Learning-based methods for correction of artifacts 

Recent advances in deep learning have strengthened artifact correction capabilities, showing its usefulness 

in mitigating the effects of issues such as patient motion, undersampling artifacts, and slice-to-slice 

inconsistencies. This has allowed us to improve the quality of diagnostic images, optimize acquisition times 

and precision in clinical environments. 

An area of interest in the literature is how deep learning-based methods handle motion-induced artifacts, a 

common challenge that affects the reliability and consistency of images in clinical and research applications 

[27]. Furthermore, advanced artifact removal techniques, such as methods based on residual neural networks 

with attention mechanisms, have shown great potential to address similar problems in other biomedical 

imaging modalities, such as light sheet fluorescence microscopy (LSFM) [14], techniques that can be 

extended to MRI.  

Below are the main approaches organized by the types of artifacts they address: 

Motion artifact correction:  

A transformer-based architecture presented by [30] uses attention mechanisms to combine local and global 

contextual features, achieving accurate motion estimates even in highly accelerated studies. In [10] A 

convolutional neural network (CNN)-based method for dynamic contrast-enhanced MRI is introduced, 

which combines multi-scale feature extraction and attention mechanisms, achieving a PSNR of 35.212 dB 

and an SSIM of 0.974. In [27] uses deep learning-based segmentation methods such as FastSurferCNN, 

Kwyk, and ReSeg, which demonstrated greater consistency in brain segmentation in images affected by 

motion artifacts compared to traditional tools such as FreeSurfer. On cardiac MRI [8], A recurrent neural 

network was developed with bidirectional ConvLSTM branches, allowing effective extraction of spatio-

temporal features and improving image quality in the presence of motion. 

Reduction of undersampling artifacts: 

In [36] a spatio-temporal approach for radial cardiac MRI is proposed, using a modified U-Net that 

outperforms existing 2D and 3D techniques in image quality and reconstruction times. For low-field MR 
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images, a residual U-Net combined with data augmentation is presented, which preserves global structure 

and fine details even with limited training data [6]. 

Inconsistencies between slices: 

The dStripe method, introduced by [13], corrects intensity variations between slices in diffusion MRI using 

a multiplicative field-based approach, improving image quality without introducing bias. 

Removal of stripe artifacts: 

In [14] presents a method based on residual neural networks with attention modules (Att-ResNet) to remove 

streak artifacts in light sheet fluorescence microscopy (LSFM) images. This approach uses an enhanced U-

Net encoder-decoder structure with residual blocks and attention, achieving improvements in PSNR and 

SSIM compared to classical and other deep learning-based methods. Although developed for LSFM, this 

method has the possibility of being adapted to magnetic resonance imaging and other modalities affected 

by stripe artifacts or similar. 

Integrated artifact correction: 

In [37] proposes an approach for the detection, correction and segmentation of artifacts in cardiac MR 

images, transforming the problem into an optimized reconstruction task with a joint loss function. In [9] 

presents MARC, a CNN-based artifact reduction method for dynamic liver MRI. This approach improves 

image quality without requiring additional scanning time, although it faces generalization challenges 

between different sequences. 

Specific applications: 

In breast diagnosis, [35] develops a decision support system for lesions using a two-stage segmentation 

approach, integrating deep learning and traditional techniques for breast cancer detection. 

Although advances in deep learning are significant, limitations remain. Among others, the most significant 

are: 

• Many studies rely on small data sets, which can restrict generalizability  ([11,36]). 

• Some methods tend to over-smooth motion estimates in images with severe artifacts [6,30]. 

• Integration of 3D volumetric techniques and multimodal approaches remains a major challenge 

[30,42]. 

• Difficulties in generalization in cases that are outside the standard training conditions [27]. 

• Reliance on high-quality training data to achieve effective stripe artifact removal, which could limit 

its applicability in clinical settings with complex noise or insufficient data [14]. 

 

Despite the limitations of the area, the integration of attention mechanisms, spatio-temporal analysis and 

architectures such as those used in [8,14,37], show progress in correcting MRI artifacts. Additionally, the 

literature shows that deep learning-based methods are not only faster, but also more consistent under 

challenging conditions [27], which reinforces its clinical potential. On the other hand, the approach Att-

ResNet [14] opens new possibilities for stripe artifact removal and could be adapted to MR modalities 

affected by similar problems. Future studies in this area should focus on expanding data sets, improving 

model generalization, and exploring hybrid approaches that combine the best of traditional and deep 

learning-based methods. 
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Table 3. presents a summary of Deep Learning-based methods for artifact correction, detailing the 

architecture, loss function, and metrics used. 

Tabla 3. Presenta un resumen de los métodos basados en Deep Learning para la corrección de artefactos, 

detallando la arquitectura, función de pérdida y métricas usadas. 

 

Method 

Artifact/ 

Medical 

Image 

Architecture Loss Metrics Hyperparameters 
Library/ 

Framework 

Deep Learning 

reconstruction [30] 

Aliasing/ 

CMRI 

Vit-V-Net and 

TransMorph 

Photometric SSIM 0.85±0.05 

PSNR 40.97±3.65 

NRMSE 0.18±0.08 

HFEN 1.87±+0.77 

Lphoto 5.36±2.86 

Optimizer: AdamW 

LR Scheduler: 5𝑥10−4 
Pytorch 

MSE 

Smoothness 

NRMSE 

HFEN 

Deep Learning 

motion reduction 

[8] 

Aliasing/ 

CMRI 

Recurrent GAN bi-

directional ConvLSTM 

Wasserstein 

distance and 

gradient 

penalty for 

discriminator 

Perceptual loss 

for generator 

SSIM 0.884±0.047 

PSNR 28.514±2.210 

Optimizer: Adam 

LR: 10−4 

Epochs: 50 

Mini-batches: 4 

Pytorch 

Deep Learning 

correction [37] 

Motion/ 

CMRI 

A k-space line detection 

network 

RCNN for  

correction 

U-Net for image  

segmentation 

Cross-entropy 

MSE 

Pixel-wise 

cross entropy 

MAE: 0.048 

PSNR: 28.805 

SSIM: 0.801 

SI: 75.819 

Optimizer: Adam 

Momentum: 0.9 

LR: 5𝑥10−4 

Activation: ReLU 

Pytorch 

Deep Learning 

correction [9] 

Motion/ 

MRI 
CNN L1 Loss SSIM: 0.91±0.07 

Optimizer: Adam 

LR: 10−3 

Epochs: 100  

Batch size: 64 

Activation: ReLU 

Keras 

Deep Learning 

correction [10] 

Motion/ 

MRI 

U-NET/CNN/ 

AttentionBlock 

MS-SSIM 

Loss  

PSNR: 35.21±3.321 

SSIM: 0.974±0.015 

Optimizer: Adam 

LR: 10−3 

Epochs: 30 

Activation: ReLU 

Pytorch 

Deep Learning 

correction [11] 

Motion/ 

MRI 
DRN-DCMB MSE 

SSIM: 0.957±0.025 

ISNR: 4.44±1.45 

Optimizer: Adam 

LR: 10−3 

Epochs: 50 

Mini batches: 50 

Activation: ReLU 

Tensorflow 

Deep Learning 

correction [36] 

Unknown/ 

MRI 
U-NET/CNN L2 Error 

PSNR: 40.376 

SSIM: 0.954 

HPSI: 0.989 

NRMSE: 0.079 

Optimizer: SGD 

LR: 10−5 

Activation: ReLU 

 

Deep Learning 

correction-

reconstruction [13] 

Stripe/ dMRI CNN MC SURE 
DTI 

MT CSD 

Optimizer: Adam 

Epochs: 500 

Triangular LRS 

Activation: ReLU 

Pytorch 
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Deep Learning 

correction [6] 

Unknown/ 

MRI 
U-NET MSE 

PSNR: 26.52±2.22 

SSIM 0.80±0.02 

NRMSE: 0.07±0.03 

Optimizer: RMSProp 

LR: 3𝑥10−3 

Epochs: 2000 

Activation: ReLU 

Tensorflow/ 

Keras 

Deep Learning 

correction [12] 

Motion/ 

MRI  

kLDNet based in U-

NET 
L1-SSIM Loss 

SSIM: 0.99±1.82 

PSNR: 44.82±6.44 

HPSI: 97.33±5.56 

Accuracy: 97.06 

Optimizer: Adam 

LR: 10−4 

Epochs: 4200 

Batch Size: 4 

Activation: ReLU 

Pytorch 

AIR Recon DL by 

GE Healthcare 

(enhance quality) 

[45] 

MRI CNN     

Deep learning 

correction [27] 
MRI 

ReSeg 

FastSurferCNN 

Focal Loss 

Generalised 

Dice Loss 

DSC 

HD 

Optimizer: RMSProp 

LR: 10−4 

Batch Size: 8 vols. 

Epochs: Early Stopping - 20 

patient 

Tensorflow 

 

For completeness, we note two non-MRI deep-learning entries that are excluded from Table 3 to keep it 

MRI-specific but remain cited for methodological affinity. LSFM  [14] addresses stripe artifacts with a U-

Net + CBAM model trained in TensorFlow/Keras using MAE and content loss (Adam; ~300 epochs, batch 

size 2), reporting MAE 6.06 ± 1.50, PSNR 30.56 ± 1.85, and SSIM 0.92 ± 0.05. CCTA  [35] targets motion 

with a Pix2Pix/U-Net pipeline (MATLAB), reporting PSNR 26.1, SSIM 0.86, DSC 0.783, and HD 4.47. 

These non-MRI results are referenced only in the text and are not counted in the core synthesis.  

3.2.4. Other type of methods for correction of artifacts 

Other methods for mitigating artifacts in medical images can be classified into two groups: hardware 

(focused on physically modifying the acquisition environment) and software (programs for image 

correction) (see Table 4).  

Below are some approaches organized by the types of artifacts they address: 

Hardware Related Spatial Distortions (HRSD): 

These distortions vary depending on the scanner configuration and the intensity of the magnetic field, 

directly affecting the spatial precision of the images. The IR-PETRA (Inversion Recovery Point Encoding 

Time Reduction with Radial Acquisition) sequence exhibits variable levels of HRSD. On 3.0 T scanners, 

adequate spatial precision was achieved without the need for correction algorithms. On 1.5 T scanners, 

distortion correction techniques were required to achieve comparable levels of accuracy [25]. In this 

scenario, adjusting acquisition strategies based on hardware minimizes distortions. 

Motion-related artifact: 

Patient movement remains a major source of artifacts. In this sub-category of work, various strategies have 

been developed to mitigate its impact: 

• Dynamic abdominal MRI with contrast: A study in 325 patients demonstrated that image quality 

directly correlates with the degree of abdominal movement, evaluated by respiratory wave analysis. 

Images without abdominal movement showed no artifacts, highlighting the importance of 

controlling patient movement [28]. 
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• Cranial magnetic resonance imaging: The use of the PROPELLER (Periodically Rotated 

Overlapping Parallel Lines with Enhanced Reconstruction) technique has been reported. This 

approach combines redundant data from multiple acquisition angles to reduce motion artifacts. In 

[32], Using a "pause" function during acquisition was shown to significantly improve image quality 

by repositioning the object, achieving increases in SSIM from 0.52 to 0.80. 

• Non-rigid motion correction (NRC): In the field of cardiac resonance, NRC has been shown to be 

superior to translational techniques, improving image quality and contrasts between cardiac tissues 

under free breathing conditions. Furthermore, it allowed a more precise quantification of late 

enhancement masses, which could significantly benefit the diagnosis of cardiac pathologies. [29]. 

Impact of metallic implants on image quality: 

Artifacts generated by metallic implants, such as those made of titanium or cobalt-to-chromium, are still a 

challenge. Various studies have evaluated how to mitigate these effects: 

• Polarization of the B1 field: In hip MRI [26], was shown that at 1.5 T, circular polarization was 

effective in reducing the size of acetabular cup artifacts and femoral necrolysis. At 3.0 T, elliptical 

polarization outperformed 1.5 T techniques in the femoral stem region, achieving significant 

reductions in artifacts. 

• Advanced techniques such as HBW-TSE and SEMAC: These methodologies have improved the 

correction of metallic artifacts, highlighting the complex interactions between magnetic field 

strength, RF pulse polarization, and implant material. This could indicate that different MRI 

techniques should be considered depending on the type of implant and the anatomical region of 

interest [26]. 

Despite advances in traditional techniques, several important challenges remain. Hardware-related 

distortions depend significantly on scanner settings, requiring custom adjustments to ensure adequate 

accuracy. Patient movement artifacts are difficult to predict in pediatric populations or critically ill patients, 

where movement control is limited. In the case of metallic implants, the effectiveness of current techniques 

is influenced by the type of implant and the anatomical region, which limits their general applicability. 

Although techniques such as NRC and PROPELLER have improved image quality, their effectiveness still 

needs additional validation in larger populations to ensure robustness and generalizability. 

Directions for future work in this field should be considered: validation of these techniques in broader 

populations with greater diversity of clinical conditions. The integration of hybrid approaches that combine 

traditional and advanced strategies, such as deep learning, to optimize artifact correction. Exploring 

automated methods to customize hardware configurations and acquisition parameters to patient needs. 

Table 4. Artifact correction methods based on their type (hardware or software). 

Tabla 4. Métodos de corrección de artefactos basado en su tipo (hardware o software). 

 

 

 

 

Medical Image Method Type of method 

MRI IR-PETRA [25] Hardware 

MRI SEMAC [26] Hardware 

MRI PROPELLER [32] Software 

CMRI NRC (non-rigid motion correction)  [29] Software 



 

 

PROSPECTIVA VOL 24  N 1 

4. DISCUSSION 

4.1 General aspects 

Leveraging Scopus and PubMed ensured editorial quality and domain-wide coverage while minimizing 

dispersion across less pertinent databases—unlike non-domain-specific sources that tended to increase noise 

with minimal incremental yield. 

Artifact removal in magnetic resonance imaging (MRI) requires the integration of diverse efforts. From 

acquisition-time strategies (e.g., SEMAC, IR-PETRA, PROPELLER) to reconstruction/post-processing 

approaches (e.g., iterative SENSE), each strategy responds to specific clinical challenges, such as the 

presence of metallic implants or the control of motion artifacts. However, in clinical practice, the availability 

of resources and the heterogeneity of acquisition protocols require a constant search for adaptable methods 

that offer good results in different circumstances. As a response to this, the community has explored the 

incorporation of deep learning solutions, often artifact-specific, with some early attempts at multi-artifact 

correction, but also pose their own challenges such as the costs associated with computing for training large 

models, as well as the availability of data in sufficient quantities to infer patterns that allow generalization. 

These observations reflect the core synthesis of primary studies, with two non-MRI papers cited only as 

contextual background. 

From the review, we identified a typical approach sequence (Figure 4): MRI data are started, which, after 

preprocessing and labeling, are then transferred to post-acquisition correction methods—both 

reconstruction/physics and deep learning and hybrid approaches. A stepwise evaluation combining image 

quality metrics with task- and reader-study-level metrics is then applied. Generalization across sequences, 

fields, and centers is then verified, along with safeguards and reporting; all of this converges in clinical 

preparation. 

Figure 4. Typical evaluation and reporting workflow for MRI artifact correction. 

Figura 4. Secuencia típica de evaluación y reporte en la corrección de artefactos en MRI. 

 

Traditional techniques, both hardware and software, usually offer great robustness in specific scenarios. 

Methods such as SEMAC minimize metal-induced distortion, while PROPELLER effectively mitigates 

motion artifacts in brain sequences. However, these systems do not usually cover all the artifacts that may 

arise (aliasing, stripes). 

On the other hand, deep learning-based methods stand out for their ability to process large volumes of data 

and learn complex noise or distortion patterns. In recent studies, they have achieved significant increases in 
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metrics such as PSNR and SSIM, demonstrating high effectiveness against motion artifacts and aliasing. 

However, they still face limitations related to the need for large quality databases and the difficulty of 

generalizing to different populations and acquisition parameters. 

Some of the challenges that remain: 

- Scarcity and variability of datasets: many studies use small image sets or simulate artifacts, which 

can limit the external validity of the results and the ability of the models to deal with exceptional 

clinical cases. 

- Multicenter clinical validation: most of the advances have been evaluated in controlled 

environments; Collaborative studies involving hospitals with different MRI equipment and 

protocols are lacking. 

- Computational cost and technical expertise: Training deep neural networks requires specialized 

hardware and trained personnel, aspects that may not be available in all health centers. 

- Standardization and integration: The existence of various acquisition methods and parameters 

makes it difficult to adopt a standard for artifact correction. Therefore, hybrid approaches are sought 

that combine the robustness of traditional techniques with the adaptability of machine learning 

techniques. 

 

 

4.2 The use of deep learning methods 

In this context, architectures ranging from conventional convolutional neural networks (CNN) to attention-

based approaches (transformers), including U-Net and GAN, have been studied. In general, U-Net and its 

variants have shown high versatility for the correction of local artifacts such as streaks or aliasing, while 

attention-based models seem more promising when capturing broader correlations, typical of extensive 

motion deformations, is required. 

Regarding quality metrics, PSNR and SSIM are the image quality metrics that predominate in the literature, 

measuring residual noise intensity and structural similarity, respectively. Across the included MRI studies, 

SSIM ≈ 0.95–0.97 and PSNR ≈ 35–45 dB are commonly reported under study-specific settings, indicating 

notable improvements in final quality. Even so, the comparison of results between studies can be affected 

by the use of different acquisition protocols, anatomical regions, and training configurations. 

Regarding cost functions and optimization methods, they commonly use functions such as MSE, MAE or 

MS-SSIM. The Adam optimizer and its variants stand out for their stability in the search for minimums. It 

is evident that given the availability of data, it is necessary to focus on the adjustment of hyperparameters 

such as batch size, learning rate, number of epochs. When the training set was scarce, the literature showed 

that they could resort to the generation of synthetic artifacts or data augmentation techniques, in order to 

strengthen the generalization capacity. 

In this particular context, limitations still persist: 
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- Dependence on large volumes of data: the lack of extensive and heterogeneous databases remains a 

problem, especially in applications where artifacts have low clinical prevalence or there are high privacy 

requirements. 

- Possible suppression of pathological signals: A critical aspect of artifact correction using neural 

networks is the possibility that noise or artifact removal may inadvertently suppress some of the relevant 

pathological signals. For example, low-contrast lesions or subtle alterations in signal intensity could be 

altered or smoothed, negatively impacting the diagnosis. In this context, it is important to have 

comprehensive clinical validations and evaluation methods that involve both image quality metrics 

(PSNR, SSIM) and qualitative assessments by experts. 

- Computational requirements: the complexity of deep neural networks increases the cost of training and 

inference, which makes mass adoption difficult in centers with limited resources. The availability and 

access to technological infrastructure is increasing, however, thinking about the construction of large 

foundational models for artifact correction maximizes the limitations in this aspect. 

- Generalization to different sequences and magnets: models trained with a specific type of sequence and 

magnetic field may not work optimally in different contexts, they are very limited to biotype patterns, 

technology and specific protocols. Therefore, it is still characteristic to find works that try to correct 

artifacts in very particular conditions and domains. 

- Correlation with improvements in real clinical practice: It is common in the literature to report 

significant improvements in image quality metrics such as PSNR and SSIM. However, further studies 

are still needed to establish the correlation between improvements in the metrics and improvements in 

real clinical practice. The extent to which a more artifact-free image impacts a more accurate diagnosis 

and, ultimately, favorable clinical outcomes must be evaluated. Several authors have suggested that, in 

addition to quantitative metrics, it is essential to include reading studies or validations with experienced 

radiologists to determine whether artifact suppression positively influences the identification of lesions 

and the establishment of therapeutic measures. 

The field of deep learning is one of the most active fields of science. The research and development of new 

models is dizzying, in this scenario the possible trends will depend on these same dynamics in the sense that 

new mathematical theories or architectures could limit the initiatives to develop models with current 

architectures. However, we can establish in general terms: 

- Hybrid models: Combining traditional techniques (SEMAC, PROPELLER) with neural network 

architectures could allow for more robust corrections that are less dependent on extensive data. 

- Creating large repositories: advancing initiatives that bring together images from multiple centers with 

different protocols and populations, ensuring anonymization and compliance with ethical aspects, in 

massive quantities, will allow the idea of building large foundational models for artifact correction, or 

at least moving in the direction of generalization between modalities. 

- Improved explainability: Interpretability methods aimed at helping radiologists understand the 

transformation that the network performs on the image, reducing diagnostic uncertainty, are desirable 

in this field as in any other AI application domain. However, the community has not yet developed 

general extensible methods between architectures. It seems that a trade-off must be made between the 

benefits of these techniques and the loss of explainability of their results. 



 

 

PROSPECTIVA VOL 24  N 1 

- Integration of attention architectures: The incorporation of mechanisms that optimize self-attention, 

such as efficient attention mechanisms (e.g., windowed or linear attention), is emerging as a promising 

way to capture global correlations in the image and correct artifacts in dynamic or long sequences. 

4.3 Ethical considerations 

Although the studies analyzed report the use of anonymized data to train deep learning models, the ethical 

and legal implications remain an aspect to consider. As a scoping review, we did not access individual-level 

data; we summarized how primary studies reported consent/approval and de-identification. Privacy 

regulations, such as those in Europe [46] and the United States [47], require strengthening data protection 

and transparency in its use. This aspect must be considered so that the anonymization process does not affect 

the quality and representativeness of the data in the construction of unbiased models that generalize 

appropriately. 

In this work, we recognize these ethical implications; however, since the focus was on the review of artifact 

correction methods, the legal dimension was not explored in depth. 

4.4 Study limitations 

An important limitation of this study is the small number of articles finally included. This aspect is 

explained, in large part, by the nature of most works related to artifacts from the physical perspective of the 

acquisition process, however, our focus was on the correction of artifacts once they were generated. The 

five-year window and the use of Scopus/PubMed (plus hand-searching) may have missed earlier or non-

indexed works. Although other databases were not included, the robustness of Scopus and PubMed, 

complemented by targeted hand-searching, mitigated the risk of missing relevant studies. As a scoping 

synthesis, we did not perform a quantitative meta-analysis or a formal risk-of-bias assessment; heterogeneity 

in datasets, sequences, and metrics precluded pooling. 

 

5. CONCLUSIONS 

Artifact correction in MRI benefits from both traditional approaches, such as hardware-oriented solutions 

and software techniques, and DL methods show strong gains for specific artifact types and settings; broader 

multi-artifact generalization remains an open goal. However, deep learning approaches critically rely on 

large-scale, high-quality data sets and specialized computational resources, while traditional solutions, 

although more specific, show robust performance in well-defined scenarios. 

Recent studies indicate that hybrid strategies, combining physical adjustments with deep neural networks, 

improve artifact mitigation while generally preserving diagnostic details. Still, limitations remain, including 

the risk of removing or altering true pathological signals due to artifact-removal modifications, highlighting 

the need for explainable models and rigorous clinical validation. Data sharing practices must also improve 

to ensure diverse training sets and broader applicability of these techniques. Ultimately, the integration of 

traditional and AI-based solutions, along with consistent multi-center assessments and transparent 

correction processes, appears to be the most promising avenue for advancing MRI imaging quality and 

diagnostic accuracy. 
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