

Cite this article as: W. Velasquez Ruiz, A. Martínez Oñate, J. Hoyos Sánchez “Asistente

virtual interactivo para resolver consultas relacionadas con motocicletas mediante RAG”,

Prospectiva, Vol. 24 N° 1 2026

Asistente virtual interactivo para resolver consultas relacionadas con

motocicletas mediante RAG

Interactive virtual assistant for addressing motorcycle-related queries using

RAG

William Andrés Velasquez Ruiz¹, Ángel Andrés Martínez Oñate², Juan Pablo Hoyos Sánchez³

¹ Mechatronic Engineer, Universidad Nacional de Colombia sede De La Paz, La Paz Colombia.

https://orcid.org/0009-0009-5202-0031

² Mechatronic Engineer, Universidad Nacional de Colombia sede De La Paz, La Paz, Colombia.

https://orcid.org/0009-0003-7673-6065

³ Doctor in Electronic Sciences, Universidad Nacional de Colombia sede De La Paz, La paz, Colombia.

 https://orcid.org/0000-0002-1844-9127

jhoyoss@unal.edu.co

Recibido: 18/08/2025 / Aceptado: 20/11/2025

http://doi.org/ 10.15665/rp.v24i1.3828

RESUMEN

Este trabajo presenta el diseño e implementación de un asistente virtual interactivo orientado a la resolución

de dudas técnicas sobre motocicletas, específicamente la Boxer CT100 KS. El sistema fue construido

utilizando un enfoque de Retrieval-Augmented Generation (RAG) combinado con modelos de lenguaje de

gran escala (LLMs), operando de manera completamente local a través de una interfaz web con un avatar

2D. La base de conocimientos se generó a partir de manuales técnicos, los cuales fueron procesados y

almacenados en una base de datos vectorial. Se evaluaron múltiples combinaciones de modelos de

embeddings y generativos mediante marcos como RAGAS y DeepEval, utilizando métricas como

faithfulness, context precision y answer relevancy. Los resultados permitieron identificar configuraciones

óptimas del sistema, donde las mejores destacaron en las métricas clave —como el modelo de embedding

sentence-transformers y de lenguaje Llama-3.3-70b, que logró un faithfulness de 0.964 y context precision

de 0.971 en RAGAS-Mistral, y el modelo de embedding intfloat/multilingual-e5-base y Llama-3.3-70b, que

alcanzó un answer relevancy de 0.971 en DeepEval-Llama3—, demostrando la viabilidad de soluciones

https://orcid.org/0009-0009-5202-0031
https://orcid.org/0009-0003-7673-6065
https://orcid.org/0000-0002-1844-9127
mailto:jhoyoss@unal.edu.co
http://doi.org/

personalizadas y privadas para asistencia técnica basada en IA. Se proponen mejoras mediante la

incorporación de capacidades multimodales y la ampliación del corpus técnico.

Palabras clave: Asistente virtual, RAG, LLM, motocicletas, LangChain, evaluación automática,

inteligencia artificial.

ABSTRACT

This work presents the design and implementation of an interactive virtual assistant designed to resolve

technical inquiries about motorcycles, specifically the Boxer CT100 KS. The system was built using a

Retrieval-Augmented Generation (RAG) approach, combined with large language models (LLMs), and

operates entirely locally through a web interface with a 2D avatar. The knowledge base was generated from

technical manuals, which were processed and stored in a vector database. Multiple combinations of

embedding and generative models were evaluated using frameworks such as RAGAS and DeepEval,

applying metrics like faithfulness, context precision, and answer relevancy. The results allowed the

identification of optimal system configurations, where the best ones excelled in key metrics —such as the

sentence-transformers embedding model combined with the Llama-3.3-70b language model, achieving a

faithfulness score of 0.964 and context precision of 0.971 in RAGAS-Mistral, and the intfloat/multilingual-

e5-base embedding model with Llama-3.3-70b, reaching an answer relevancy of 0.971 in DeepEval-

Llama3—, demonstrating the feasibility of customized and private AI-based technical assistance solutions.

Improvements are proposed through the incorporation of multimodal capabilities and the expansion of the

technical corpus.

Keywords: Virtual assistant, RAG, LLM, motorcycles, LangChain, automatic evaluation, artificial

intelligence.

1. Introducción

El desarrollo de asistentes virtuales ha experimentado un crecimiento significativo gracias a los avances en

inteligencia artificial (IA), particularmente en modelos de lenguaje de gran escala (LLMs) y sistemas de

Retrieval-Augmented Generation (RAG). Modelos como GPT-4 o Grok procesan preguntas complejas en

lenguaje natural y entregan respuestas relevantes para el usuario. No obstante, su uso en dominios

específicos enfrenta desafíos debido a la terminología técnica, lo cual ha sido abordado mediante sistemas

RAG aplicados a la gestión del conocimiento industrial, alcanzando un MRR del 88% en servicios técnicos

[1]. Asimismo, se ha demostrado que los LLMs pueden integrarse en sistemas de recomendación para

capturar conocimiento de dominio abierto y mejorar la personalización en aplicaciones como la

recomendación de productos [2].

El sistema RAG combina recuperación de información con generación de texto, utilizando una base de

conocimientos (por ejemplo, catálogos de repuestos) para reducir alucinaciones del LLM y proporcionar

respuestas contextualizadas. Su efectividad en entornos industriales ha sido demostrada mediante el uso de

BM25 y embeddings para recuperar información técnica [1]. También se ha aplicado en asistentes de

mantenimiento basados en ontologías OWL, combinando grafos de conocimiento con LMs para mejorar la

precisión contextual en procedimientos técnicos, lo cual es relevante para la recomendación de repuestos

[3]. De forma similar, un enfoque híbrido KG-Vector RAG integró grafos de conocimiento con recuperación

vectorial, logrando una precisión de coincidencia exacta del 77,8%, lo que refuerza su viabilidad en

dominios técnicos [4]. Además, se ha empleado en control de calidad en manufactura, utilizando

embeddings semánticos y reranking para diagnosticar defectos, con un enfoque transferible a la

identificación de repuestos [5]. En contextos educativos, ha mejorado la precisión en respuestas a preguntas

de libros de texto en un 9,84% [6]. Finalmente, la recuperación generativa (GCoQA) elimina la necesidad

de índices vectoriales y mejora la recuperación en un 13,6%, ofreciendo una alternativa eficiente para este

tipo de aplicaciones [7].

Se ha demostrado que la inteligencia artificial, incluyendo redes neuronales y aprendizaje por transferencia,

mejora su precisión al mitigar la escasez de datos [8]. También se han utilizado LLMs para generar datos

sintéticos que optimizan modelos de recuperación densa, un método aplicable a la creación de consultas

sintéticas de repuestos en escenarios con información limitada [9]. El aprendizaje por refuerzo profundo

(DRL) ha sido explorado para adaptar recomendaciones a preferencias dinámicas, lo cual permitiría

personalizar sugerencias en entornos como talleres [10]. En el contexto del comercio electrónico, se

identifican tendencias como la recuperación basada en contenido, especialmente relevantes para catálogos

de repuestos [11]. Además, se ha observado que los usuarios expertos prefieren sistemas colaborativos, lo

que sugiere combinar ambos enfoques para atender tanto a mecánicos como a usuarios inexpertos [12].

Finalmente, los LLMs pueden reforzar estos sistemas al integrar conocimiento externo, aportando una

ventaja significativa para el asistente propuesto [2]

Las aplicaciones de asistentes virtuales y sistemas de recomendación en la literatura son diversas. En

entornos industriales, se ha utilizado RAG para la gestión del conocimiento y el control de calidad, con

enfoques aplicables a la recomendación de repuestos [1,5]. También se ha implementado un asistente virtual

basado en RAG (RAGVA) en la gestión de carreteras, abordando desafíos de ingeniería como la

escalabilidad y la evaluación, aspectos relevantes para el desarrollo del asistente virtual [13]. En el ámbito

de la salud, RAG ha sido utilizado para extraer información clínica y responder preguntas neurológicas, lo

que demuestra su versatilidad en dominios técnicos complejos [14,15]. Asimismo, se ha aplicado para

generar resúmenes en lenguaje sencillo, una técnica útil para explicar repuestos a usuarios no especializados

[16]. Finalmente, se han explorado factores que influyen en la adopción de asistentes de voz, resaltando su

papel de apoyo, análogo al que se propone en talleres mecánicos [17].

Los asistentes virtuales enfrentan diversas barreras. Se han identificado preocupaciones relacionadas con la

privacidad, la confianza y los costos en su adopción dentro del comercio minorista, aspectos también

relevantes para usuarios en talleres mecánicos [18]. Estas inquietudes se complementan con los desafíos en

la evaluación de sistemas RAG, donde se requiere el uso de métricas robustas para asegurar su fiabilidad en

aplicaciones prácticas [13]. En este sentido, RAGAS (Retrieval Augmented Generation Assessment) surge

como un framework innovador para la evaluación automatizada de sistemas RAG, sin necesidad de

anotaciones humanas. RAGAS propone métricas estandarizadas como Context Precisión, Context Recall,

Faithfulness y Answer correctness, que evalúan la relevancia y precisión de la recuperación de información,

la fidelidad del modelo de lenguaje y la calidad de las respuestas generadas. Este enfoque es crucial en

entornos como talleres mecánicos, donde la exactitud en la información sobre repuestos o procedimientos

técnicos es vital para la confianza del usuario [19]. En contextos domésticos y vehiculares, se ha revisado

el papel de los asistentes de voz proactivos, destacando que la capacidad de anticipar necesidades podría

mejorar la experiencia en entornos como talleres [20]. Finalmente, se ha subrayado la importancia de

abordar aspectos éticos y de privacidad en sistemas de recomendación, lo que implica garantizar

transparencia en el tratamiento de los datos de repuestos [21].

Este articulo propone un asistente virtual implementado mediante tecnologías web, utilizando un avatar 2D

local que funciona directamente en el navegador. El objetivo fue recomendar repuestos y resolver dudas

técnicas sobre motocicletas, particularmente la Boxer CT100 KS, mediante un sistema RAG respaldado por

un modelo de lenguaje de gran escala (LLM). Para ello se desarrolló una base de conocimientos precisa y

actualizada, lo cual implicó el procesamiento de manuales técnicos y documentos oficiales, que en

escenarios futuros podría requerir colaboración directa con fabricantes de motocicletas. La compatibilidad

de repuestos representó otro reto, similar a los problemas de precisión en sistemas de control de calidad, ya

que ya que exigía una identificación exacta de componentes intercambiables y verificables a partir de

catálogos técnicos limitados. También se consideraron aspectos críticos como la privacidad del usuario y la

eficiencia del sistema, especialmente al ejecutarse de manera completamente local sin depender de servicios

en la nube. Destacándose varias ventajas: (i) personalización del agente, habilitada por el uso de LLMs y

recuperación aumentada por generación (RAG), (ii) arquitectura del sistema escalable hacia otras marcas o

modelos de vehículos, con potencial de incorporar elementos visuales o tutoriales interactivos en futuras

versiones, (iii) evaluación robusta del desempeño mediante RAGAS y DeepEval, y (iv) reproducibilidad y

extensibilidad por parte de la comunidad científica.

En resumen, el flujo de trabajo propuesto, desde la extracción y segmentación de manuales técnicos con

pdfplumber, la generación de embeddings multilingües y almacenamiento en Chroma, hasta la integración

en LangChain con LLMs locales, interfaz en Flask y la evaluación mediante RAGAS y DeepEval, demostró

una solución robusta, privada y de alto rendimiento para asistencia técnica en motocicletas, con

configuraciones óptimas que superaron el 0.96 en métricas clave como fidelidad y precisión contextual.

2. Metodología

El desarrollo del presente proyecto se basa en la creación de un asistente virtual interactivo capaz de

responder preguntas, orientado a la resolución de dudas y preguntas que tenga el usuario acerca de la moto

Boxer ct100 KS, para lo cual se proprone el flujo de trabajo descrito en al Figura 1. Este sistema se apoyó

en un enfoque de Retrieval-Augmented Generation (RAG), utilizando modelos de lenguaje de gran escala

(LLMs) para proporcionar respuestas precisas, contextualizadas y con un lenguaje natural. La solución se

implementó principalmente en Python, integrando un framework como LangChain que es un framework de

código abierto diseñado para facilitar la construcción de aplicaciones que integran modelos de lenguaje con

datos externos, permitiendo orquestar flujos complejos de interacción entre LLMs, bases de datos, APIs y

documentos locales [22], junto a múltiples librerías y otros frameworks orientados al procesamiento de

documentos, la generación de embeddings y la conversión de texto a voz.

Figura 1: Flujo de trabajo del asistente virtual interactivo.

El entorno visual y de interacción con el usuario fue desarrollado utilizando tecnologías web (HTML, CSS

y JavaScript). Se diseñó un avatar animado en 2D que se ejecutan localmente en el navegador, sin depender

de entornos gráficos externos. Este avatar respondía visualmente a los mensajes del asistente mediante

animaciones que simulaban movimiento al hablar, las cuales se activaban durante la reproducción de audio.

La voz del asistente se generó mediante la API de síntesis de voz nativa del navegador (SpeechSynthesis),

lo cual permitió mantener toda la solución de manera local, sin requerir acceso a servicios externos de texto

a voz. Finalmente, se llevó a cabo una comparación entre las distintas respuestas generadas por los modelos

seleccionados, con el fin de clasificar la utilidad y viabilidad de las recomendaciones ofrecidas.

2.1. Extracción y procesamiento de información

El primer paso en la progresión fue el establecimiento de una base de conocimientos compuesta

principalmente por manuales de usuario final junto a catálogos técnicos y guías de ventas de la motocicleta.

Estos estaban en formato pdf y al ser tecnológicamente ricos tenían varias dificultades de extracción de

información como consecuencia de su riqueza en imágenes, tablas y formatos no textuales.

Para enfrentar este reto, se hizo uso de la biblioteca pdfplumber, que facilita el desglose minucioso de texto

y estructuras como tablas a partir de documentos en formato PDF [23]. Adicionalmente, se migraron todos

los documentos que se encontraban almacenados en una ruta específica del proyecto y se hizo un proceso

de segmentación (chunking) que involucró segmentar cada escritura en tramos de texto como máximo de

1000 caracteres, dejando un solapamiento de 100 caracteres entre tramos, lo cual funcionó como ventana

de contexto entre un chunk y otro.

Además del texto plano, se utilizó un proceso auxiliar para desplegar las tablas incluidas en los documentos.

Cada tabla se descompuso en filas, y sus valores fueron concatenados y normalizados sin perder su

estructura informativa y evitando así pérdida de contenido relevante. El texto de cada página y sus tablas

incluidas se unieron en un único conjunto de entrada que luego fue procesada como un objeto enriquecido

con metadatos como es el caso del nombre del archivo, fuente y páginas en total. Esta estructura aseguró un

manejo más sólido de información que permitió trazabilidad fácil de las respuestas generadas y sin perder

mucha información que resultó útil al momento de generar las respuestas.

2.2. Generación de la base de datos vectorial

Una vez que estaba extraída y segmentada toda la información, el siguiente paso involucró almacenar en

una base de datos vectorial el conocimiento resultante. Para este fin se utilizó Chroma, que es un

almacenador especializado en datos vectoriales. Chroma es capaz de sustituir texto en forma de vectores

numéricos usando embeddings y así permite calcular la semántica de semejanza entre preguntas de usuario

y pasajes de base de datos[24]. Básicamente Chroma es un sistema de base de datos vector que es capaz de

procesar eficientemente búsqueda semántica sobre grandes cantidades de texto tanto estructurado como no

estructurado y es particularmente valioso en sistemas RAG centrados en recuperación y generación de

información técnica. Los embeddings fueron generados utilizando modelos integrados en LangChain, que

permiten convertir cada fragmento textual en una representación matemática de alta dimensión, los

utilizados en el proyecto son intfloat/multilingual-e5-base y sentence-transformers/paraphrase-multiling

ual-MiniLM-L12-v2 utilizando técnicas como en este caso la de la similitud del coseno, la cual se representa

de la siguiente forma:

𝑆𝑖𝑚(𝐴, 𝐵) =
𝐴 ∙ 𝐵

‖𝐴‖‖𝐵‖

Donde A y B son vectores de alta dimensión generados a partir de texto natural mediante modelos de

embedding. Esta es una métrica comúnmente empleada para medir la cercanía semántica entre textos

representados como vectores. Estas representaciones fueron almacenadas en un repositorio persistente,

donde pueden ser consultadas de manera rápida cada vez que el usuario realiza una pregunta sin necesidad

de volver a crear todo el embedding. Gracias a este enfoque, el sistema es capaz de recuperar el fragmento

más relevante desde la base de datos vectorial, sirviendo como insumo directo para la generación de

respuestas por parte del modelo de lenguaje elegido.

2.3. Definir la configuración del modelo generativo y la definición del asistente

Una vez procesada la de base de datos de vectorial, utilizamos un generador de modelos de lenguaje (LLM),

que pueda entender consultas en un idioma natural y dar respuestas claras y acoplables. A esa finalidad

recurrimos modelos como gemini-2.0-flash, Llama 3.3-70b y gemma2-9b-it experimentalmente verificados.

Se definió un prompt específico para configurar la personalidad del asistente virtual. Este prompt se

encuentra en el GitHub del proyecto [25] y describe el rol del agente como un asesor técnico especializado

en motocicletas especialmente en la Boxer CT100 KS, capacitado para responder preguntas sobre garantías,

procedimientos de mantenimiento y dudas de localización de partes. Esta personalización permite generar

respuestas más alineadas con el tono y la intención del proyecto, aportando valor al usuario final mediante

un lenguaje técnico, claro y empático. En esta parte también agregamos un historial de las respuestas

preguntas y respuestas formuladas anteriormente para que así el agente tenga contexto de los temas de los

cuales se está hablando y evite ser redundante en cosas que ya han quedado claras, como también limitamos

la cantidad de chunks que más se parezcan a la consulta del usuario para el anexo a la query la cual se le

manda al modelo de lenguaje.

2.4. Entorno Virtual

El sistema fue implementado con una interfaz gráfica web construida sobre el framework Flask, permitiendo

al usuario interactuar con el asistente de forma completamente local. A través de esta interfaz, el usuario

puede formular sus preguntas por medio de texto escrito, enfocadas a dudas técnicas sobre la motocicleta

Boxer CT 100 KS. Cada vez que se realiza una consulta, ésta es enviada al backend desarrollado en Python,

donde se procesa mediante el RAG. La respuesta generada se muestra en pantalla dentro de la misma interfaz

web, garantizando una experiencia fluida y directa. Además, el sistema incluye una funcionalidad de

retroalimentación auditiva. Una vez generada la respuesta textual, esta se convierte en un archivo de audio

en formato MP3, el cual se reproduce automáticamente en la interfaz mediante un reproductor HTML5.

Esta característica otorga un componente más natural e inmersivo a la interacción con el asistente,

asemejándose al comportamiento de un asesor técnico con voz propia.

 2.5. Evaluación y comparación de modelos

Por último, para autentificar el rendimiento del sistema, se propone realizar una evaluación comparativa

entre los tres modelos lingüísticos, gemini-2.0-flash, Llama 3.3-70b y gemma2-9b-it. Para llevar a cabo esta

evaluación, se utilizará el marco de evaluación RAGAS y DeepEval para analizar objetivamente el

rendimiento de los sistemas basados en RAG [26], como se aprecia en la Figura 2. RAGAS permite analizar

diferentes aspectos del sistema evaluando tanto la fase de recuperación de contexto como la de generación

de respuestas[26]. Por su parte, DeepEval proporciona un marco robusto para evaluar modelos de lenguaje,

enfocándose en métricas que complementan el análisis de RAGAS, permitiendo una evaluación integral del

desempeño del sistema [26]. En este proyecto se utilizarán tres métricas clave proporcionadas por los marcos

evaluadores: Faithfulness, Context precision y Answer relevancy.

● Faithfulness evalúa la fidelidad factual de las respuestas generadas, verificando que estén

fundamentadas únicamente en el contexto recuperado y no contengan alucinaciones o información

externa no sustentada.

● Context precision mide qué tan relevante y específico es el fragmento de información recuperado

en relación con la pregunta formulada.

● Answer relevancy se centra en evaluar qué tan pertinente es la respuesta generada para el mensaje

dado. Se asigna una puntuación más baja a las respuestas que están incompletas o contienen

información redundante y las puntuaciones más altas indican una mejor relevancia.

Para la evaluación se construyó un conjunto de datos compuesto por 28 preguntas formuladas, centradas en

aspectos técnicos y operativos de la motocicleta Boxer CT 100 KS. Cada entrada en el dataset incluye la

pregunta del usuario, el contexto recuperado desde la base vectorial, la respuesta generada por el sistema y

una respuesta esperada validada manualmente, la cual sirvió como punto de referencia para calcular las

métricas deseadas, estas respuestas esperadas fueron formuladas de múltiples lecturas a la base.

Figura 2: Pipeline para la evaluación de sistema RAG

de conocimientos cargada al sistema como también el ingreso a un LLM más grande (GPT 4) luego se

sintetizaron las respuestas para así poder tener las ground truths incorporadas en el conjunto de datos. Este

conjunto será aplicado a las seis combinaciones posibles entre los modelos de embeddings y los modelos

generativos (2 embeddings × 3 modelos generativos) en los dos marcos evaluativos, permitiendo una

evaluación comparativa sistemática de cada configuración. El análisis resultante permitió identificar qué

combinación de modelos ofrece un mejor equilibrio entre fidelidad, precisión contextual y exactitud de

respuestas, proporcionando así evidencia empírica para orientar futuras decisiones de mejora en el diseño

del sistema de asistencia virtual.

3. Resultados y discusión

Los resultados obtenidos corresponden a la evaluación de seis combinaciones entre dos modelos de

embedding —E1: intfloat/multilingual-e5-base y E2: sentence-transformers/paraphrase-multilingual -

MiniLM-L12-v2— con tres modelos de lenguaje —L1: Gemini-2.0-flash, L2: Llama-3.3-70b-versatile, y

L3: gemma2-9b-it. El codigo desarrollado se encuentra disponible en el siguiente enlace al repositorio de

GitHub: https://github.com/ElWilly9/AsistentedeMotosRAG.

La evaluación se realizó utilizando dos marcos: RAGAS y DeepEval, cada uno aplicado con dos modelos

evaluadores distintos: Llama3 y Mistral. Las Tablas 1 y 2 muestran los puntajes obtenidos con RAGAS. En

la evaluación con Llama3, la combinación E2L2 presenta el valor más alto en faithfulness (0.601), mientras

que E1L2 alcanza el mejor resultado en answer relevancy (0.174). En cuanto a context precision, el mayor

valor se obtiene con E1L3 (0.510). Por otro lado, bajo RAGAS con Mistral, E2L2 destaca en faithfulness

https://github.com/ElWilly9/AsistentedeMotosRAG

con un valor de 0.813, seguido de cerca por E1L2 con 0.784. Las combinaciones E2L1 (0.835) y E2L2

(0.822) logran las mayores puntuaciones en context precision. En answer relevancy, los valores son bajos

en general, siendo E1L3(0.139) el más alto.

Las Tablas 3 y 4 presentan los resultados utilizando DeepEval. En este marco, se observa un desempeño

superior en answer relevancy, donde E1L2 obtiene los mejores resultados con ambos evaluadores (0.810

con Llama3 y 0.795 con Mistral). En faithfulness, la combinación más destacada con Llama3 es E1L1

(0.530), mientras que con Mistral es E2L1 (0.465). La métrica context precision alcanza su valor máximo

con E1L2 (0.415) usando Mistral.

Tabla 1: Evaluación de combinaciones de modelos de embedding(E) y LLM (L) para RAG usando RAGAS

con Llama3:8b

Modelo Faithfulness Answer Relevancy Context Presicion

E1L1 0.526 0.131 0.508

E1L2 0.525 0.174 0.319

E1L3 0.524 0.144 0.510

E2L1 0.511 0.122 0.354

E2L2 0.601 0.136 0.310

E2L3 0.563 0.104 0.354

Tabla 2: Evaluación de combinaciones de modelos de embedding(E) y LLM (L) para RAG usando RAGAS

con Mistral:7b

Modelo Faithfulness Answer Relevancy Context Presicion

E1L1 0.436 0.120 0.724

E1L2 0.784 0.137 0.801

E1L3 0.488 0.139 0.803

E2L1 0.468 0.106 0.835

E2L2 0.813 0.119 0.822

E2L3 0.393 0.096 0.762

Tabla 3: Evaluación de combinaciones de modelos de embedding(E) y LLM (L) para RAG usando

DeepEval con Llama3:8b

Modelo Faithfulness Answer Relevancy Context Presicion

E1L1 0.530 0.613 0.421

E1L2 0.414 0.810 0.271

E1L3 0.406 0.755 0.318

E2L1 0.387 0.709 0.338

E2L2 0.453 0.696 0.364

E2L3 0.452 0.565 0.276

Tabla 4: Evaluación de combinaciones de modelos de embedding(E) y LLM (L) para RAG usando

DeepEval con Mistral:7b

Modelo Faithfulness Answer Relevancy Context Presicion

E1L1 0.438 0.672 0.264

E1L2 0.251 0.795 0.415

E1L3 0.351 0.580 0.350

E2L1 0.465 0.728 0.301

E2L2 0.265 0.697 0.343

E2L3 0.286 0.643 0.288

Durante la evaluación, se detectaron errores en el cálculo de las métricas por parte de RAGAS y DeepEval,

especialmente en preguntas con respuestas extensas o estructuras complejas, generando valores nulos o

igualados a cero. Las tablas anteriores incluyen estos casos, por lo que reflejan el comportamiento general

del sistema considerando también su fragilidad ante ciertas entradas.

 3.1. Promedios sin errores de evaluación

Para mitigar los efectos de los errores mencionados, se calcularon promedios filtrados considerando

únicamente las métricas válidas. Las Tablas 5 y 6 muestran los resultados bajo RAGAS. En ambas

evaluaciones, todas las combinaciones alcanzan valores superiores a 0.76 en context precision, y en general

se observan mejoras notables respecto a las tablas originales.

Tabla 5: Promedios filtrados para RAG usando RAGAS con Llama3:8b

Modelo Faithfulness Answer Relevancy Context Presicion

E1L1 0.803 0.281 0.908

E1L2 0.767 0.269 0.843

E1L3 0.882 0.280 0.821

E2L1 0.707 0.203 0.766

E2L2 0.819 0.293 0.808

E2L3 0.861 0.214 0.810

Tabla 6: Promedios filtrados para RAG usando RAGAS con Mistral:7b

Modelo Faithfulness Answer Relevancy Context Presicion

E1L1 0.823 0.255 0.950

E1L2 0.881 0.265 0.919

E1L3 0.944 0.281 0.961

E2L1 0.684 0.216 0.964

E2L2 0.964 0.293 0.971

E2L3 0.650 0.218 0.827

Con RAGAS y Llama3, E1L3 logra el mayor faithfulness (0.882), mientras que con Mistral, E2L2 destaca

con 0.964. En ambos casos, los valores de context precision superan 0.80 en la mayoría de combinaciones.

En el caso de DeepEval (Tablas 7 y 8), los resultados también muestran una mejora significativa. Bajo

Llama3, E1L1 obtiene el mayor faithfulness (0.922), y E1L2 alcanza 0.971 en answer relevancy. Bajo

Mistral, varias combinaciones alcanzan valores perfectos de 1.000 en faithfulness, como E1L1, E1L3 y

E2L3. En cuanto a context precision, las puntuaciones más altas se registran en E1L3 (0.905 con Mistral) y

E1L1 (0.715 con Llama3). Estos resultados refuerzan la hipótesis de que el sistema presenta un buen

desempeño cuando los evaluadores procesan correctamente las salidas.

En cuanto a context precision, las puntuaciones más altas se registran en E1L3 (0.905 con Mistral) y E1L1

(0.715 con Llama3). Estos resultados refuerzan la hipótesis de que el sistema presenta un buen desempeño

cuando los evaluadores procesan correctamente las salidas.

Tabla 7: Promedios filtrados para RAG usando DeepEval con Llama3:8b

Modelo Faithfulness Answer Relevancy Context Presicion

E1L1 0.922 0.845 0.715

E1L2 0.753 0.971 0.564

E1L3 0.717 0.866 0.593

E2L1 0.725 0.807 0.529

E2L2 0.765 0.671 0.490

E2L3 0.917 0.500 0.603

Tabla 8: Promedios filtrados para RAG usando DeepEval con Mistral:7b

Modelo Faithfulness Answer Relevancy Context Presicion

E1L1 1.000 0.875 0.500

E1L2 0.754 0.819 0.637

E1L3 1.000 0.750 0.905

E2L1 0.833 0.932 0.715

E2L2 0.833 0.750 0.720

E2L3 1.000 0.792 0.543

En conjunto, los promedios filtrados ofrecen una estimación más realista del rendimiento del sistema, al

eliminar el sesgo provocado por los errores en la evaluación. Además, brindan evidencia clara para tomar

decisiones informadas sobre qué combinaciones de modelos utilizar en un entorno de producción.

En cuanto al desempeño, se observó que no existía una única combinación dominante de modelos. Sin

embargo, algunas configuraciones, como E1L2 y E2L2, lograron destacar en diferentes métricas evaluadas

por RAGAS y DeepEval, lo cual coincidió con hallazgos en la literatura sobre la importancia de ajustar

tanto el modelo generativo como el modelo de recuperación para lograr un mejor balance entre fidelidad y

precisión contextual [19,10]. Además, la comparación de métricas filtradas, excluyendo respuestas mal

evaluadas, permitió una evaluación más realista del sistema y destacó su robustez ante consultas bien

estructuradas.

No obstante, también se identificaron limitaciones importantes. Algunos errores sistemáticos de evaluación

en las métricas automáticas dificultaron la comparación global entre combinaciones de modelos,

particularmente en preguntas complejas o respuestas largas. Esta situación resalta la necesidad de contar

con evaluaciones complementarias, incluyendo validación manual o el diseño de datasets de prueba más

controlados. Asimismo, la calidad de las respuestas estuvo limitada por la calidad y cobertura de los

documentos base, lo cual sugiere que la expansión de la base de conocimiento podría mejorar

significativamente el desempeño del sistema.

Finalmente, el sistema se limitó a responder preguntas textuales con apoyo de voz, sin incorporar imágenes,

diagramas ni funcionalidades interactivas más avanzadas. La incorporación de capacidades multimodales y

mecanismos de retroalimentación de usuario serían pasos naturales en futuras iteraciones del sistema, tal

como ha sido propuesto en trabajos recientes sobre asistentes virtuales proactivos y adaptativos [20,10].

4. Conclusiones

El desarrollo del asistente virtual propuesto demostró la viabilidad de integrar técnicas de Retrieval-

Augmented Generation (RAG) con modelos de lenguaje de gran escala (LLMs) para la recomendación

técnica de repuestos y la resolución de dudas en el dominio específico de motocicletas, en este caso la Boxer

CT 100 KS. A través de la construcción de una base de conocimientos a partir de documentos técnicos y su

transformación en una base de datos vectorial, fue posible recuperar información relevante y generar

respuestas contextualizadas en lenguaje natural.

El sistema fue diseñado para operar de manera local, utilizando tecnologías web y un avatar animado en 2D

que permite una experiencia de interacción fluida y accesible, sin requerir conexión a servicios externos.

Esta decisión técnica también contribuyó a garantizar la privacidad del usuario y facilitar la ejecución del

sistema en entornos con recursos limitados. Y, dada su naturaleza de código abierto, que facilita su

extensibilidad hacia nuevas funcionalidades, se convierte en una alternativa a los sistemas propietarios.

Los experimentos realizados, utilizando múltiples combinaciones de modelos de embeddings y generativos,

permitieron identificar dos configuraciones con mejor rendimiento en términos de fidelidad, relevancia

contextual y precisión de respuesta. Además, el uso de marcos de evaluación como RAGAS y DeepEval

ofreció una base objetiva y reproducible para valorar la calidad de las respuestas del sistema. La

configuracion con mejore desempeño fue E2L2 (sentence-transformers/paraphrase-multilingual-MiniLM -

L12-v2 + Llama-3.3-70b) con un faithfulness de 0.964 y context precision de 0.971 en RAGAS-Mistral, y

la segunda fue E1L2 (intfloat/multilingual-e5-base + Llama-3.3-70b) con un answer relevancy de 0.971 en

DeepEval-Llama3. Aunque existen limitaciones relacionadas con errores de evaluación en respuestas

complejas, el sistema mostró un comportamiento robusto y un claro potencial para ser escalado a otros

vehículos o marcas.

El sistema propuesto presentó varias limitaciones inherentes al enfoque adoptado. En primer lugar, los

modelos de lenguaje empleados fueron predominantemente de código abierto, como Gemma2-9b-it y

Llama-3.3-70b, con un número relativamente limitado de parámetros en comparación con alternativas

propietarias de mayor escala, como GPT-4 o 5. Esta restricción en la capacidad de parámetros y en la

complejidad estructural de los modelos pudo influir en la profundidad de las respuestas generadas,

potencialmente incrementando la incidencia de alucinaciones o imprecisiones en consultas técnicas

complejas, aunque se mitigó parcialmente mediante el uso de RAG. En segundo lugar, la base de

conocimientos se vio confinada a datos públicos proporcionados por el fabricante, incluyendo manuales de

usuario, carteles publicitarios y materiales de ventas, lo que excluyó información propietaria o detallada

sobre componentes internos, diagnósticos avanzados o actualizaciones no divulgadas; esta limitación

restringió la cobertura integral del sistema y su capacidad para abordar escenarios reales de mantenimiento

o reparación. Finalmente, los marcos evaluadores utilizados, RAGAS y DeepEval, respaldados por modelos

como Llama3 y Mistral, están sujetos a sesgos inherentes en sus algoritmos de puntuación, ya que dependen

de interpretaciones subjetivas de lo que constituye una respuesta óptima o verídica, lo cual se evidenció en

errores de cálculo observados durante la evaluación de respuestas extensas o complejas.

Como trabajo futuro, se propone ampliar la base de conocimientos con fuentes actualizadas directamente

proporcionadas por fabricantes, incorporar capacidades multimodales para soportar imágenes o diagramas

de piezas, y evaluar el sistema en escenarios reales con usuarios finales en talleres o entornos de servicio

técnico. Asimismo, podría integrarse un módulo de retroalimentación continua para mejorar el sistema de

forma iterativa con base en las interacciones registradas.

Referencias

[1] L. C. Chen, M. S. Pardeshi, Y. X. Liao, and K. C. Pai, “Application of retrieval-augmented

generation for interactive industrial knowledge management via a large language model,” Computer

Standards & Interfaces, vol. 94, p. 103995, Aug. 2025, doi: 10.1016/J.CSI.2025.103995.

[2] LinJianghao et al., “How Can Recommender Systems Benefit from Large Language Models: A

Survey,” ACM Transactions on Information Systems, Jan. 2025, doi: 10.1145/3678004.

[3] H. Ludwig, T. Schmidt, and M. Kühn, “An ontology-based retrieval augmented generation

procedure for a voice-controlled maintenance assistant,” Computers in Industry, vol. 169, p. 104289,

Aug. 2025, doi: 10.1016/J.COMPIND.2025.104289.

[4] Y. Wan, Z. Chen, Y. Liu, C. Chen, and M. Packianather, “Empowering LLMs by hybrid retrieval-

augmented generation for domain-centric Q&A in smart manufacturing,” Advanced Engineering

Informatics, vol. 65, p. 103212, May 2025, doi: 10.1016/J.AEI.2025.103212.

[5] J. A. Heredia Álvaro and J. G. Barreda, “An advanced retrieval-augmented generation system for

manufacturing quality control,” Advanced Engineering Informatics, vol. 64, p. 103007, Mar. 2025,

doi: 10.1016/J.AEI.2024.103007.

[6] H. A. Alawwad, A. Alhothali, U. Naseem, A. Alkhathlan, and A. Jamal, “Enhancing textual textbook

question answering with large language models and retrieval augmented generation,” Pattern

Recognition, vol. 162, p. 111332, Jun. 2025, doi: 10.1016/J.PATCOG.2024.111332.

[7] Y. Li, N. Yang, L. Wang, F. Wei, and W. Li, “Generative retrieval for conversational question

answering,” Information Processing & Management, vol. 60, no. 5, p. 103475, Sep. 2023, doi:

10.1016/J.IPM.2023.103475.

[8] Q. Zhang, J. Lu, and Y. Jin, “Artificial intelligence in recommender systems,” Complex and

Intelligent Systems, vol. 7, no. 1, pp. 439–457, Feb. 2021, doi: 10.1007/S40747-020-00212-

W/FIGURES/1.

[9] L. Silva and L. Barbosa, “Improving dense retrieval models with LLM augmented data for dataset

search,” Knowledge-Based Systems, vol. 294, p. 111740, Jun. 2024, doi:

10.1016/J.KNOSYS.2024.111740.

[10] X. Chen, L. Yao, J. McAuley, G. Zhou, and X. Wang, “Deep reinforcement learning in recommender

systems: A survey and new perspectives,” Knowledge-Based Systems, vol. 264, p. 110335, Mar.

2023, doi: 10.1016/J.KNOSYS.2023.110335.

[11] A. Valencia-Arias, H. Uribe-Bedoya, J. D. González-Ruiz, G. S. Santos, and E. C. Ramírez,

“Artificial intelligence and recommender systems in e-commerce. Trends and research agenda,”

Intelligent Systems with Applications, vol. 24, p. 200435, Dec. 2024, doi:

10.1016/J.ISWA.2024.200435.

[12] S. Chinchanachokchai, P. Thontirawong, and P. Chinchanachokchai, “A tale of two recommender

systems: The moderating role of consumer expertise on artificial intelligence based product

recommendations,” Journal of Retailing and Consumer Services, vol. 61, p. 102528, Jul. 2021, doi:

10.1016/J.JRETCONSER.2021.102528.

[13] R. Yang, M. Fu, C. Tantithamthavorn, C. Arora, L. Vandenhurk, and J. Chua, “RAGVA:

Engineering retrieval augmented generation-based virtual assistants in practice,” Journal of Systems

and Software, vol. 226, p. 112436, Aug. 2025, doi: 10.1016/J.JSS.2025.112436.

[14] M. Alkhalaf, P. Yu, M. Yin, and C. Deng, “Applying generative AI with retrieval augmented

generation to summarize and extract key clinical information from electronic health records,”

Journal of Biomedical Informatics, vol. 156, p. 104662, Aug. 2024, doi: 10.1016/J.JBI.2024.104662.

[15] L. Masanneck, S. G. Meuth, and M. Pawlitzki, “Evaluating base and retrieval augmented LLMs with

document or online support for evidence-based neurology,” npj Digital Medicine, vol. 8, no. 1, pp.

1–5, Dec. 2025, doi: 10.1038/S41746-025-01536-Y

[16] Y. Guo, W. Qiu, G. Leroy, S. Wang, and T. Cohen, “Retrieval augmentation of large language

models for lay language generation,” Journal of Biomedical Informatics, vol. 149, p. 104580, Jan.

2024, doi: 10.1016/J.JBI.2023.104580.

[17] A. Ermolina and V. Tiberius, “Voice-controlled intelligent personal assistants in health care:

International delphi study,” Journal of Medical Internet Research, vol. 23, no. 4, p. e25312, Apr.

2021, doi: 10.2196/25312.

[18] S. Z. Kamoonpuri and A. Sengar, “Hi, May AI help you? An analysis of the barriers impeding the

implementation and use of artificial intelligence-enabled virtual assistants in retail,” Journal of

Retailing and Consumer Services, vol. 72, p. 103258, May 2023, doi:

10.1016/J.JRETCONSER.2023.103258.

[19] S. Es, J. James, L. Espinosa-Anke, S. Schockaert, and E. Gradients, “Ragas: Automated Evaluation

of Retrieval Augmented Generation,” Apr. 2025, Accessed: Jul. 04, 2025. [Online]. Available:

https://arxiv.org/pdf/2309.15217v2

[20] C. Bérubé et al., “Proactive behavior in voice assistants: A systematic review and conceptual model,”

Computers in Human Behavior Reports, vol. 14, p. 100411, May 2024, doi:

10.1016/J.CHBR.2024.100411.

[21] T. Iqbal et al., “Towards integration of artificial intelligence into medical devices as a real-time

recommender system for personalised healthcare: State-of-the-art and future prospects,” Health

Sciences Review, vol. 10, p. 100150, Mar. 2024, doi: 10.1016/J.HSR.2024.100150.

[22] “LangChain.” Accessed: Jul. 29, 2025. [Online]. Available: https://www.langchain.com/langchain

https://www.langchain.com/langchain

[23] “jsvine/pdfplumber: Plumb a PDF for detailed information about each char, rectangle, line, et cetera

— and easily extract text and tables.” Accessed: Jul. 29, 2025. [Online]. Available:

https://github.com/jsvine/pdfplumber

[24] “Chroma | LangChain.” Accessed: Jul. 29, 2025. [Online]. Available:

https://python.langchain.com/docs/integrations/vectorstores/chroma/

[25] “ElWilly9/AsistentedeMotosRAG: Asistente Virtual Interactivo para resolución de inquietudes

acerca de tu moto implementando RAG.” Accessed: Jul. 29, 2025. [Online]. Available:

https://github.com/ElWilly9/AsistentedeMotosRAG

[26] “Quick Introduction | DeepEval - The Open-Source LLM Evaluation Framework.” Accessed: Jul.

29, 2025. [Online]. Available: https://deepeval.com/docs/getting-started

https://github.com/jsvine/pdfplumber
https://python.langchain.com/docs/integrations/vectorstores/chroma/
https://github.com/ElWilly9/AsistentedeMotosRAG
https://deepeval.com/docs/getting-started

