
PROSPECTIVA VOL 23 N2.

Hardware Implementation of FPIC Controllers for Discrete-Time Chaotic

Systems Using LabVIEW-FPGA

Implementación en Hardware de Controladores FPIC para Sistemas Caóticos

en Tiempo Discreto Usando LabVIEW-FPGA

Heiner Castro Gutiérrez1, Carlos Robles-Algarín2*, John Taborda Giraldo3

1. PhD., Purdue University, West Lafayette, United States. https://orcid.org/0000-0002-9218-7540

2*. PhD., Universidad del Magdalena, Santa Marta, Colombia. https://orcid.org/0000-0002-5879-5243,

croblesa@unimagdalena.edu.co

3. PhD., Universidad del Magdalena, Santa Marta, Colombia. https://orcid.org/0000-0002-6090-1711

Cite this article as: H. Castro Gutiérrez, C. Robles-Algarín, J. Taborda Giraldo

“Hardware Implementation of FPIC Controllers for

Discrete-Time Chaotic Systems Using LabVIEW-FPGA”,

Prospectiva, Vol. 23 N° 2 2025

Recibido: 03/05/2025 / Aceptado: 11/07/2025

http://doi.org/ 10.15665/rp.v23i2.3767

ABSTRACT

This paper presents the hardware implementation of control algorithms based on the Fixed-Point Inducting

Control (FPIC) technique applied to chaotic systems. Three discrete-time chaotic maps—Logistic, Fold,

and Flip—were analyzed in both coupled and uncoupled configurations. For each system, equilibrium points

were analytically determined. The control strategy was implemented using LabVIEW-FPGA to generate

and stabilize chaotic behaviors in real time, and the results were validated against MATLAB simulations.

Bifurcation diagrams were generated to identify parameter regions that lead to chaotic or stable behaviors.

All systems were implemented using 16-bit fixed-point arithmetic, demonstrating the feasibility of FPGA-

based realization of FPIC-controlled chaotic systems. The proposed prototyping setup provides a valuable

platform for rapid testing of chaos-based control strategies and their potential applications in secure

communications and nonlinear systems. The results demonstrate that FPIC effectively stabilized chaotic

behavior in all systems, with convergence to the analytical fixed point occurring near gs ≈ 0.5 for the

Logistic Map and gs ≈ 0.748 for the Fold Map. Experimental FPGA results closely matched MATLAB

simulations, confirming the accuracy and viability of the proposed implementation.

Key Words: chaotic systems, FPIC control, LabVIEW, FPGA, bifurcation diagrams, discrete nonlinear

maps.

https://orcid.org/0000-0002-6090-1711
http://doi.org/

PROSPECTIVA VOL 23 N2.

RESUMEN

Este artículo de investigación científica presenta la implementación en hardware de algoritmos de control

basados en la técnica de Control por Inducción en Punto Fijo (FPIC) aplicada a sistemas caóticos. Se

analizaron tres mapas caóticos en tiempo discreto—Logístico, Fold y Flip—tanto en configuraciones

acopladas como no acopladas. Para cada sistema, se determinaron analíticamente los puntos de equilibrio.

La estrategia de control fue implementada en tiempo real utilizando LabVIEW-FPGA con aritmética en

punto fijo de 16 bits, y los resultados fueron validados mediante simulaciones en MATLAB. Se generaron

diagramas de bifurcación para identificar las regiones de parámetros que conducen a comportamientos

caóticos o estables. El entorno de prototipado desarrollado constituye una herramienta valiosa para la

evaluación rápida de estrategias de control basadas en el caos y sus aplicaciones potenciales en

comunicaciones seguras y sistemas no lineales. Los resultados demuestran que la técnica FPIC logró

estabilizar efectivamente el comportamiento caótico en todos los sistemas, con convergencia al punto fijo

analítico alrededor de gs ≈ 0.5 para el Mapa Logístico y gs ≈ 0.748 para el Mapa Fold. Los resultados

experimentales en FPGA coincidieron estrechamente con las simulaciones en MATLAB, confirmando la

precisión y viabilidad de la implementación propuesta.

Palabras clave: sistemas caóticos, control FPIC, LabVIEW, FPGA, diagramas de bifurcación, mapas

discretos no lineales.

1. INTRODUCTION

Chaotic systems are nonlinear dynamical systems that exhibit complex, aperiodic behavior and extreme

sensitivity to initial conditions. Despite being deterministic, their unpredictable evolution makes them both

a challenge and an opportunity in control engineering [1], [2]. In recent years, chaos theory has garnered

increasing attention in areas such as secure communications, encryption, modeling biological systems,

random number generation, and the control of power converters [3], [4]. However, controlling chaotic

dynamics remains a significant challenge due to the inherent instability and sensitivity of such systems.

Several control techniques have been proposed to stabilize chaotic systems around desired trajectories or

equilibrium points [5], [6]. Traditional methods include feedback linearization, sliding mode control, and

time-delayed feedback, among others [7], [8]. More recently, researchers have explored strategies that

exploit the discrete-time structure of many chaotic maps, leading to simpler and faster control

implementations suitable for digital hardware. Among them, the Fixed-Point Inducting Control (FPIC)

technique has emerged as a promising approach due to its simplicity, robustness, and compatibility with

fixed-point arithmetic [9], [10].

FPIC represents an advanced approach to managing chaotic systems, utilizing techniques from control

theory to stabilize and manipulate unpredictable behaviors. The FPIC methodology focuses on integrating

feedback mechanisms that adaptively govern chaotic dynamics, particularly in systems susceptible to

instability and sensitivity to initial conditions. The principle underlying FPIC is its capability to induce

stability by ensuring that the average of the system’s behavior over time approaches a desired fixed point.

This concept is closely related to Zero Average Dynamics (ZAD), another control strategy that aids in

maintaining system stability. The combination of these two strategies creates a robust control framework

wherein the FPIC technique can stabilize chaotic orbits prevalent in such systems [11], [12]. This property

is especially beneficial when applied to power electronics, where chaotic behavior can significantly impact

performance and reliability [9]. Particularly, the application of FPIC has been verified in controlling chaotic

dynamics within power converters, improving system performance and stability under challenging

conditions [13], [14].

PROSPECTIVA VOL 23 N2.

At the same time, Field-Programmable Gate Arrays (FPGAs) have become increasingly popular for

implementing real-time control systems, thanks to their parallelism, low latency, and energy efficiency.

Compared to microcontrollers or DSPs, FPGAs offer better performance for systems requiring deterministic

response and fast execution cycles—features critical when implementing real-time controllers for chaotic

systems [15], [16]. Furthermore, high-level platforms such as LabVIEW-FPGA allow rapid prototyping

without requiring low-level HDL programming, significantly reducing development time and complexity

[17], [18].

Despite these advances, few works have explored the direct implementation of chaos control strategies—

especially FPIC—on FPGA hardware using fixed-point arithmetic. Most studies remain limited to software

simulations or focus on floating-point architectures that are not suitable for low-power or embedded

applications. This represents a significant research gap, particularly in the context of real-time systems,

where hardware resource efficiency is crucial.

Real-time chaos control is particularly relevant in embedded systems and hardware-constrained

environments, where unpredictable behavior can compromise stability or security. The use of discrete-time

chaotic maps, such as the Logistic, Fold, and Flip Maps, provides a simplified yet representative modeling

framework for studying complex nonlinear dynamics. These maps are widely used due to their analytical

tractability and ease of implementation in digital hardware, making them ideal candidates for validating

control strategies under limited computational resources [19].

Moreover, the combination of FPIC with FPGA implementation offers a compelling solution for

applications requiring low latency and high reliability. The simplicity of FPIC, which avoids the need for

system identification or heavy computation, aligns well with the hardware constraints of real-time systems.

By leveraging fixed-point arithmetic and modular design in LabVIEW-FPGA, the approach presented here

enables rapid iteration, scalability to multidimensional chaotic networks, and direct integration into low-

power devices [20], [21]. This flexibility supports a wide range of use cases, from chaos-based encryption

to real-time control in nonlinear systems [22], [23].

In this work, we address this gap by presenting the design, implementation, and experimental evaluation of

FPIC controllers for three one-dimensional discrete chaotic maps: the Logistic Map, the Fold Map, and the

Flip Map. Both standalone and linearly coupled versions of these maps are considered. The control strategy

is implemented using LabVIEW-FPGA, enabling real-time generation and stabilization of chaotic behavior

with 16-bit fixed-point arithmetic. Bifurcation diagrams are obtained to analyze system dynamics under

varying control parameters, and the FPGA results are validated against MATLAB simulations. The

proposed system offers a flexible and reusable platform for the rapid prototyping of chaos-based control

strategies, with potential applications in embedded systems, nonlinear control, and secure communications.

2. METHODOLOGY

The methodology adopted in this work involves design, hardware implementation, and experimental

validation of FPIC controllers applied to chaotic systems using the LabVIEW-FPGA platform. The process

is structured into five key stages: mathematical modeling of chaotic systems, formulation of the FPIC

controller, hardware implementation using an FPGA, simulation validation, and experimental testing.

2.1. Chaotic Systems in Nonlinear Dynamics

A chaotic system is a nonlinear dynamic system that exhibits disordered behavior despite being governed

by deterministic laws. One of its defining characteristics is extreme sensitivity to initial conditions, where

even minimal variations in the starting point can lead to vastly different trajectories over time [24]. This

PROSPECTIVA VOL 23 N2.

property, often referred to as the butterfly effect, is a hallmark of chaos and has been extensively studied in

systems across physics, biology, and engineering.

In this study, three one-dimensional discrete-time chaotic maps were selected for analysis and

implementation: The Logistic Map, the Fold Map, and the Flip Map [25]. These systems were chosen due

to their well-known nonlinear dynamics and frequent use in studies of chaos theory. Their mathematical

formulations are given by equations (1), (2), and (3), respectively:

𝑥(𝑘 + 1) = 𝑟𝑥(𝑘)(1 − 𝑥(𝑘)) (1)

𝑥(𝑘 + 1) = 𝑟 + 𝑥(𝑘) + 𝑥2(𝑘) (2)

𝑥(𝑘 + 1) = −(1 + 𝑟)𝑥(𝑘) + 𝑥3(𝑘) (3)

To explore higher-dimensional dynamics and more complex behaviors, coupled versions of these maps were

also implemented. A coupled chaotic system can be constructed by linking two identical chaotic maps, either

linearly or nonlinearly [21]. In this work, only linear coupling was considered, with formulations as shown

in equations (4) and (5):

(
𝑥(𝑘 + 1)

𝑦(𝑘 + 1)
) = (

𝑓𝑥(𝑘) + 𝜖(𝑦(𝑘) − 𝑥(𝑘))

𝑓𝑦(𝑘) + 𝜖(𝑥(𝑘) − 𝑦(𝑘))
) (4)

(
𝑥(𝑘 + 1)

𝑦(𝑘 + 1)
) = (

𝑓𝑥(𝑘) + 𝜖 (𝑓𝑦(𝑘) − 𝑓𝑥(𝑘))

𝑓𝑦(𝑘) + 𝜖 (𝑓𝑥(𝑘) − 𝑓𝑦(𝑘))
) (5)

Here, fx and fy represent the chaotic functions corresponding to the right-hand sides of equations (1)–(3).

The linear coupling approach allows the creation of symmetrical systems where each map influences the

behavior of the other through a shared coupling term. These configurations offer a stepping stone toward

more complex systems that involve multiple chaotic maps with heterogeneous dynamics or nonlinear

interactions. While this work focuses on linearly coupled maps, future efforts may extend this approach to

nonlinear coupling schemes or networks of multiple chaotic generators interacting through various

topologies. Such systems are particularly relevant in modeling complex phenomena in nature and in

engineering applications, such as secure communications, where the synchronization of chaotic signals

plays a crucial role.

2.2. Fixed-Point Inducting Control Theory

Fixed-Point Inducting Control (FPIC) is a control technique designed to stabilize the behavior of chaotic

systems by driving their trajectories toward a fixed point. Since chaotic systems are inherently unstable and

extremely sensitive to initial conditions, a control mechanism is necessary to enforce predictable and stable

dynamics. FPIC was first introduced approximately a decade ago and has since been applied in various

domains, including power electronics and nonlinear mechanical systems [10].

The FPIC strategy is grounded in a theoretical result that allows the stabilization of a fixed point in discrete-

time chaotic systems [14]. Consider a system described by a difference equation of the form:

PROSPECTIVA VOL 23 N2.

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘)) (6)

Where f(x(k)) is a nonlinear, potentially chaotic function. A point x* is said to be a fixed point if f(x*)=x*.

To determine whether this fixed point can be stabilized, the system is linearized around x*, and the Jacobian

matrix J0 is evaluated at that point. If the eigenvalues of J0 satisfy the following condition:

|𝜆𝑖(𝐽0)| = |𝜆𝑖 (
𝜕𝑦
𝜕𝑥

|𝑥∗)| < 1 ∀𝑖 (7)

Then there exists a control signal:

𝑓(𝑘) =
𝑓(𝑥(𝑘)) + 𝑁𝑥∗

𝑁 + 1
 (8)

That ensures stabilization of the system at the fixed point x*, provided that the scalar gain N is positive and

sufficiently large. In this context, the control law in equation (8) can be rewritten as:

𝑓(𝑘) = 𝑔𝑚𝑓𝑥(𝑘) + 𝑔𝑠𝑥∗ (9)

Where gm is referred to as the master parameter and gs as the slave parameter. These coefficients satisfy:

𝑔𝑚 =
1

𝑁 + 1
 (10)

𝑔𝑠 =
𝑁

𝑁 + 1
 (11)

Ensuring that gm+gs=1.

The roles of the master and slave parameters are fundamental in shaping the system’s response. The master

parameter gm controls the influence of the original (chaotic) system on the overall dynamics, while the slave

parameter gs dictates the extent to which the control input nudges the system toward the fixed point x*. When

gs is close to 1 (and hence gm close to 0), the system exhibits strong convergence toward x*; conversely,

when gm dominates, chaotic behavior re-emerges. Thus, to ensure stabilization, N must be chosen

sufficiently large, as required by the FPIC theorem.

This theoretical formulation serves as the basis for implementing FPIC in various types of chaotic maps, as

detailed in the following sections. Each system is stabilized using the control law in equation (9), with fixed-

point arithmetic tailored for real-time hardware execution.

2.3. Controller Design

The implementation of FPIC control begins with the mathematical reformulation of the original chaotic

system by incorporating the control input. Starting from equation (6), the controlled system can be expressed

as:

PROSPECTIVA VOL 23 N2.

𝑥(𝑘 + 1) = 𝑔𝑚𝑓(𝑥(𝑘)) + 𝑔𝑠𝑥∗ (12)

where x* is the desired fixed point of the system. Substituting the definitions of gm and gs from equations

(10) and (11), the equation becomes:

𝑥(𝑘 + 1) =
1

1 + 𝑁
𝑓(𝑥(𝑘)) +

𝑁

1 + 𝑁
𝑥∗ (13)

In this form, the control law blends the original chaotic function with a constant input derived from the

desired fixed point. The effectiveness of the controller relies on selecting a value of N (and hence gs) that

ensures convergence toward x*.

To determine the fixed point for each chaotic system, the steady-state condition is applied, assuming the

system reaches equilibrium when x(k+1)=x(k)=x*. This leads to:

𝑥∗ = 𝑓(𝑥∗) (14)

Solving equation (14) for each chaotic map yields the corresponding fixed points [25]:

• Logistic Map

𝑥∗ = 1 −
1

𝑟
 (15)

• Fold Map

𝑥∗ = ±√𝑟 (16)

• Flip Map

𝑥∗ = 0, 𝑥∗ = ±√−𝑟 (17)

These expressions define the fixed points at which control is applied. Notably, while the Logistic Map has

a single stable fixed point, the Fold and Flip Maps may yield two or more possible fixed points depending

on the sign and magnitude of the gain parameter r.

An essential conceptual insight from equation (13) is the interpretation of gm as the weighting of the original

(unstable) system dynamics, while gs governs the strength of the control action. Since gm+gs=1, increasing

gs enhances stability but reduces system responsiveness to chaotic behavior, and vice versa. Therefore, a

proper selection of N is crucial to ensure a balance between stability and dynamical performance.

By substituting the expressions of the chaotic maps (1), (2), and (3) into equation (13), the controlled

versions of the Logistic, Fold, and Flip systems are obtained. Additionally, for linearly coupled systems, the

FPIC-controlled equations are derived in the form:

PROSPECTIVA VOL 23 N2.

𝑥(𝑘 + 1) = 𝑔𝑚𝑓𝑥(𝑥(𝑘)) + 𝑔𝑠𝑥∗ (18)

𝑦(𝑘 + 1) = 𝑔𝑚𝑓𝑦(𝑦(𝑘)) + 𝑔𝑠𝑦∗ (19)

Where fx and fy denote the chaotic maps, and x*, y* are the respective fixed points. In this configuration, both

subsystems are synchronized in their gain and control parameters, resulting in symmetrical controlled

dynamics. This design methodology enables the practical implementation of chaos control through simple

arithmetic operations—additions and multiplications—which are efficiently handled using fixed-point

representation in FPGA hardware.

2.4. FPIC Control Implementation in Chaotic Systems

The experimental implementation of chaotic systems and their respective FPIC controllers was conducted

according to the methodology described in [25]. LabVIEW-FPGA was used to translate the control

algorithms into hardware and deploy them on a Virtex II FPGA. This platform enables graphical

programming and real-time deployment on reconfigurable hardware (FPGAs), facilitating rapid prototyping

and efficient use of hardware resources [17], [26]. For software validation, MATLAB was employed due to

its robust numerical capabilities, especially in simulating nonlinear dynamic systems and generating

bifurcation diagrams [19], [27].

All calculations were performed using 16-bit fixed-point representation, with 5 bits assigned to the integer

part and 11 bits to the fractional part. This precision level was selected as a trade-off between computational

accuracy and hardware efficiency. Figure 1 illustrates the block diagrams for the three chaotic functions

implemented in LabVIEW FPGA.

These diagrams directly correspond to the mathematical definitions in equations (1), (2), and (3). For

simplicity, feedback paths (used to store the previous value x(k)) are not shown in the figure. In practice,

feedback was implemented by initializing registers with the initial condition x(0) before execution.

Figure 1. Implemented chaotic functions: (a) Logistic, (b) Fold, (c) Flip. All have fixed-point (FXP) inputs

x(k), Gain, and the constant 1; the output is fixed-point fx(k), and the boxes represent the computations.

Figura 1. Funciones caóticas utilizadas: (a) Logística, (b) Pliegue, (c) Volteo. Todas las funciones tienen

entradas de punto-fijo x(k), Gain, y la constante 1, la salida es de punto-fijo fx(k), y las cajas representan los

cálculos realizados.

The FPIC control implementation is illustrated in Figure 2. In this setup, the slave parameter gs is defined

as a configurable input, while the master parameter is computed internally as gm=1-gs. The user can also

input the gain parameter r and the fixed point x*. The system then performs a sweep over a specified range

of gs values to study the effect of control strength on the system dynamics.

(a) (b) (c)

PROSPECTIVA VOL 23 N2.

Figure 2. FPIC control implementation: (a) FPIC controller, (b) General connection diagram. Inputs fx(k),

1, gs, and x*, and output x(k+1) are formatted in fixed-point (FXP) representation. Boxes represent the

calculations.

Figura 2. Implementación del control FPIC: (a) Controlador FPIC, (b) Diagrama general de conexión. Las

entradas fx(k), 1, gs, and x*, y la salida x(k+1) tienen formato de punto-fijo (FXP). Las cajas representan las

operaciones realizadas.

It is important to note that the analytical calculation of the fixed point was not performed in hardware for

the Fold and Flip maps, due to the square root operations involved. Square root calculations typically require

sequential hardware circuits that span multiple clock cycles, reducing system performance. In order to

maintain one-clock-cycle combinatorial logic for all arithmetic operations, fixed-point values of x* were

precomputed externally and loaded into the system. In contrast, the Logistic Map allows for the direct

computation of x* from a simple expression (equation 15), which can be implemented directly in the FPGA

logic. Figure 2(b) shows the complete control diagram, where the chaotic function block is connected to the

FPIC control logic and the parameter sweep module.

To collect and visualize system behavior under different control configurations, a testbench was developed

using a two-level loop structure in the LabVIEW-FPGA environment. The outer loop (green) controls the

incremental variation of the slave parameter gs, based on initial and final values defined by the user. For

each value of gs, the inner loop (yellow) executes the chaotic system and stores the output values in on-chip

memory using a Direct Memory Access (DMA) module.

During each iteration, the chaotic system is allowed to evolve over 4000 time steps. To avoid transient

effects, only the final 128 output values are saved in memory. Each output sample is paired with the

corresponding gs value, resulting in 128 × 128 = 16,384 saved data points. The saved values are 16 bits

wide, stored as pairs (gs, x(k)) in 32-bit memory addresses. This data is later extracted for post-processing

and visualization in MATLAB or other analysis tools.

This setup enables the real-time generation of bifurcation diagrams and the dynamic analysis of controlled

chaotic systems with fine-grained resolution, providing a valuable platform for testing and validating FPIC-

based chaos controllers in hardware.

(a)

(b)

PROSPECTIVA VOL 23 N2.

2.5. Coupled Chaotic Systems

The implementation of coupled chaotic systems was conducted using the structure shown in Figure 3. In

this configuration, two identical chaotic maps are connected through a linear coupling mechanism, enabling

the analysis of higher-dimensional chaotic behaviors while maintaining simplicity in hardware

implementation.

In the controlled coupled system, the FPIC control strategy is applied simultaneously to both subsystems.

The same gain parameter r, fixed point x*=y*, and control parameters gs and gm are used for each chaotic

map. This symmetry ensures that the dynamic behavior of both systems remains synchronized, simplifying

the overall control logic.

As illustrated in Figure 3(b), each chaotic subsystem is controlled individually using the FPIC approach

described in previous sections. The linear coupling is introduced by allowing each subsystem to influence

the other through a weighted term. However, in this work, the coupling is purely through shared parameters,

rather than direct cross-feedback. Figure 3(c) shows the general connection diagram for the coupled

implementation.

By using the same control gains and fixed points in both chaotic maps, the system maintains balance and

exhibits predictable behavior under control. This setup also facilitates scalability to more complex

configurations, including asymmetric or heterogeneous coupling, which may be explored in future work.

The controlled coupled system provides a framework for evaluating synchronization and stabilization

strategies in multidimensional chaotic environments, with potential applications in secure communication

networks and distributed nonlinear systems.

Figure 3. Coupled implementation: (a) Coupled system, (b) Coupled controller, (c) System connection

diagram. All inputs and outputs are formatted in fixed-point (FXP) representation, and the boxes represent

the performed calculations by each block.

Figura 3. Implementación del sistema acoplado: (a) Sistema acoplado, (b) Controlador acoplado, (c)

Diagrama de interconexión del sistema. Todas las entradas y salidas están representadas en punto-fijo

(FXP), y las cajas representan los cálculos realizados por cada bloque.

(a) (b)

(c)

PROSPECTIVA VOL 23 N2.

2.6. Test System for Controlled Chaotic Maps

Figure 4 presents the flow diagram of the test system developed for analyzing the controlled chaotic maps

on an FPGA. The architecture consists of two nested loops: an outer loop responsible for regulating the

variation of the slave parameter gs, and an inner loop that executes the chaotic system under test and manages

data acquisition. The outer loop (shown in green) iteratively increases gs from a user-defined initial value to

a final value, computing the step size accordingly. This loop determines the number of distinct values of gs

that will be evaluated. For this project, the number of steps was fixed to 128, meaning that 128 different

values of gs are tested in each experiment.

The inner loop (shown in yellow) simulates the evolution of the chaotic system for each value of gs. It

performs 4000 iterations to allow the system to reach a steady-state behavior, thereby minimizing the

influence of initial transients. However, only the final 128 output samples are stored for analysis, as these

represent the system’s long-term response. To record the results, a Direct Memory Access (DMA) module

was used to store output values in the FPGA’s internal RAM. Each entry in memory corresponds to a pair

(gs,x(k)), stored as two 16-bit values in a 32-bit memory word. A total of 128 output values are recorded for

each of the 128 gs steps, resulting in 16,384 saved data points per test run.

It is essential to note that the initial conditions, x(0) and y(0), remain constant throughout the experiment,

as they are hard-coded into the register’s initialization. Changing these values requires a new synthesis of

the FPGA design. If a single (non-coupled) system is tested, the second initial condition y(0) is ignored.

This test system enables high-resolution visualization of the system’s response across a range of control

strengths, allowing for the generation of bifurcation diagrams and precise characterization of stable and

chaotic regimes. The results obtained from this framework are presented and discussed in the following

section.

Figure 4. General flow diagram of the FPGA VI (Virtual Instruments)

Figura 4. Diagrama general de flujo del Instrumento Virtual (VI) en FPGA

PROSPECTIVA VOL 23 N2.

3. RESULTS AND DISCUSSION

3.1. Logistic Map Control Experiments

The first set of experiments focused on the Logistic Map, both in its uncontrolled and FPIC-controlled

versions. Initially, the system was tested without control, and the results were compared to Matlab

simulations to validate the accuracy of the FPGA implementation. The uncontrolled system showed good

agreement with simulation results, as previously reported in [25]. Subsequently, the FPIC control strategy

was applied, and the system behavior was evaluated through bifurcation diagrams. Figure 5 presents the

results for the controlled Logistic Map with initial condition x(0) = 0.4, gain parameter r = 4, and fixed

point x* = 0.75, as computed from equation (15). The value r=4 was chosen because, in the absence of

control, the system exhibits chaotic behavior at this gain level, thus providing a suitable test case for

stabilization using FPIC.

Figure 5. Controlled logistic map, x(0)=0.4, r=4, x*=0.75, gs=[0,1]: (a) Matlab simulation, (b) LabVIEW-

FPGA Response

Figura 5. Mapa logístico controlado, x(0)=0.4, r=4, x=0.75, gs=[0,1]: (a) Simulación en Matlab, (b)

Respuesta en LabVIEW-FPGA

Two notable bifurcation points are visible in the diagram. The first is a flip bifurcation to a period-2 orbit

occurring around gs≈0.276, and the second is a flip bifurcation to a period-1 orbit near gs≈0.5. For low values

of gs, the system remains chaotic, while increasing leads to greater stability. For gs>0.5, the system becomes

fully stabilized around the fixed point x=0.75, as expected from the theory. Although both Matlab and FPGA

implementations exhibit similar bifurcation structures, some minor differences were observed. In the

MATLAB simulation, the system demonstrates strong convergence to a single output value beyond gs =

0.5. However, in the FPGA response, minor oscillations are visible near the fixed point around gs=0.5. For

instance, the output slightly alternates between two values close to 0.75, indicating a weaker stability margin

in this region.

This discrepancy prompted a fixed-point simulation in MATLAB using the same 16-bit precision as in the

FPGA. The simulation confirmed that hardware errors did not cause the oscillations but rather are inherent

to the reduced numerical resolution. When using floating-point precision, the oscillations disappear, further

validating the impact of fixed-point representation on system dynamics. The coupled Logistic Map

implementation yielded results similar to the single system case. The bifurcation structure and stability

transition points were preserved, although minor discrepancies were observed around the transition

PROSPECTIVA VOL 23 N2.

thresholds in the results between MATLAB and FPGA. These are consistent with the behavior described

above and are attributable to the fixed-point arithmetic in the hardware implementation.

3.2. Fold Map Experiments

The next set of experiments focused on the Fold Map. Both the standalone and the coupled versions of this

chaotic system were evaluated under FPIC control. The initial condition for the single system was set to

x(0) = 0, with a gain parameter r = -2, resulting in a fixed point x* = ±1.4142, as per equation (16). This

value of r was selected because it induces instability in the uncontrolled system, providing a good scenario

to evaluate the controller’s effectiveness.

Figure 6 displays the bifurcation diagrams obtained from the MATLAB simulation and the FPGA

implementation of the controlled Fold Map. The system reaches a stable regime for gs > 0.325; however, it

does not converge to the analytically computed fixed point x* until gs > 0.748. For intermediate values of

gs, the system stabilizes to other values depending on the strength of the control, highlighting the progressive

influence of the FPIC mechanism. The differences between the MATLAB and FPGA results in this case are

minimal and can be considered negligible. As with the Logistic Map, a slight discrepancy appears around

the transition to stability, but it does not significantly impact the interpretation of the system’s behavior.

Figure 6. Controlled Fold Map x(0)=0, r=-2, x*=1.4142, gs=[0,1]. (a) Matlab Simulation, (b) LabVIEW-

FPGA Response

Figura 6. Mapa Fold controlado con x(0)=0, r=-2, x*=1.4142, gs=[0,1]. (a) Simulación en Matlab, (b)

Respuesta en LabVIEW-FPGA

Figure 7 shows the response of the controlled coupled Fold Map, where initial conditions were set to

x(0)=0.4, y(0)=0.3, with gain r=-2, coupling coefficient α=0.275, and fixed points x=y*=-1.4142. The

system becomes stable for gs>0.582, with convergence to the fixed point visible beyond gs≈0.748. As in the

previous case, for intermediate values of gs, the system reaches a stable regime but not necessarily at the

fixed point.

Again, the differences between the Matlab simulation and FPGA implementation are present but limited.

These discrepancies are primarily observed near the stability threshold and can be attributed to fixed-point

resolution constraints, as previously discussed. Additional experiments with other values of x*, including

the negative branch of the solution 𝑥∗ = −√2, produced consistent results. The system exhibited similar

PROSPECTIVA VOL 23 N2.

stabilization behavior and convergence characteristics under FPIC control, confirming the reproducibility

and reliability of the proposed hardware implementation.

Figure 7. Controlled Coupled Fold Map x(0)=0.4, y(0)=0.3, r=-2, ε=0.275. (a) x*=y*=-1.4142, gs=[0,1].

(a) Matlab Simulation, (b) LabVIEW-FPGA Response

Figura 7. Mapa Fold acoplado y controlado con x(0)=0.4, y(0)=0.3, r=-2, ε=0.275. (a) x*=y*=-1.4142,

gs=[0,1]. (a) Simulación en Matlab, (b) Respuesta en LabVIEW-FPGA

3.3. Flip Map Experiments

The final set of experiments evaluated the Flip Map under FPIC control. As with the previous systems, both

standalone and coupled configurations were tested to examine the behavior of the control strategy in

different settings. Figure 8 shows the results for the controlled Flip Map with initial condition x(0) = 4, gain

parameter r = 2, and fixed point x* = 0, in accordance with equation (17). In this case, the slave parameter

gs was varied over the interval [0, 2], allowing for the observation of the system’s behavior under both weak

and strong control influences. The system exhibits stable behavior around the fixed point x*=0 for the

interval 0.67 < gs < 1.34. Interestingly, this experiment shows that the system can remain stable even for gs

> 1, although stability is eventually lost when gs exceeds approximately 1.65. This highlights the importance

of proper parameter selection in FPIC: excessive control input may lead to destabilization rather than

convergence.

Figure 9 presents the response of the controlled coupled Flip Map, using initial conditions x(0)=4, y(0)=0.3,

gain r=2, coupling factor α=0.275, and fixed points x*=y*=-2. In this configuration, the system reaches a

stable regime for gs>0.6; however, convergence to the fixed point x*=y*=-2 is only observed beyond gs

≈0.88. These results are consistent with the theoretical behavior of the FPIC-controlled Flip Map. As with

previous systems, intermediate values lead to stabilization in regions close to, but not precisely at, the fixed

point. This phenomenon is expected due to the gradual influence of the control signal and the nonlinear

dynamics of the map.

Additional experiments were conducted for both the standalone and coupled Flip Map using different fixed

points, including x*=2 and x*=-2, confirming the robustness of the FPIC strategy. The system consistently

transitioned from chaotic behavior to stable convergence as the gain (gs) increased, and the observed

behavior aligned closely with both MATLAB simulations and FPGA implementations. Minor deviations,

PROSPECTIVA VOL 23 N2.

as observed in previous cases, were attributed again to the effects of fixed-point arithmetic on system

resolution.

Figure 8. Controlled Flip Map x(0)=0.4, r=2, x*=0 and gs=[0,2]. (a) Matlab Simulation, (b) FPGA

Response

Figura 8. Mapa Flip controlado con x(0)=0.4, r=2, x*=0 and gs=[0,2]. (a) Simulación en Matlab, (b)

Respuesta en FPGA

Figure 9. Controlled Coupled Flip Map x(0)=0.4, y(0)=0.3, =0.275, r=2, x*=y*=-2 and gs=[0,1]. (a)

Matlab Simulation, (b) FPGA Response

Figura 9. Mapa Flip acoplado controlado con x(0)=0.4, y(0)=0.3, =0.275, r=2, x*=y*=-2 and gs=[0,1].

(a) Simulación en Matlab, (b) Respuesta en FPGA

Compared to previous studies that implemented chaos control or chaotic signal generation on FPGA

hardware, the present work provides a simplified and fully fixed-point implementation of the FPIC strategy,

enabling real-time bifurcation analysis and stabilization. For example, Trujillo et al. applied FPIC along

with ZAD and TDAS control strategies in a Boost converter, but their implementation was limited to

simulations and did not explore FPGA-based hardware realization or bifurcation tracking [10]. Similarly,

Guillén-Fernández et al. focused on chaotic oscillator synchronization for secure communications using

PROSPECTIVA VOL 23 N2.

FPGA, but without direct control of bifurcations or parameter sweeps [22]. Mohamed et al. proposed

fractional-order chaotic systems in FPGA, yet their implementation involved floating-point operations and

lacked real-time adaptability [20]. More recently, Damaj et al. developed high-speed Lorenz system cores

on FPGA, prioritizing throughput and precision [28], while Babajans et al. explored hybrid synchronization

of analog–digital chaotic oscillators using fixed-point arithmetic [29]. However, neither addressed

stabilization through live parameter control. In contrast, our approach combines analytical fixed-point

design with dynamic parameter sweeps, demonstrating both control effectiveness and low-resource FPGA

deployment suitability.

4. CONCLUSIONS

This work demonstrates the successful hardware implementation of FPIC-controlled chaotic systems using

LabVIEW and an FPGA. Three well-known one-dimensional chaotic maps—the Logistic, Fold, and Flip

Maps—were modeled, analyzed, and stabilized using the Fixed-Point Inducing Control technique. Both

standalone and linearly coupled configurations were evaluated, providing insight into the scalability and

flexibility of the proposed control approach. All systems were implemented on a Virtex II FPGA using

fixed-point arithmetic with 16-bit precision. The combination of LabVIEW-FPGA’s graphical

programming interface and the efficient use of FPGA resources enabled rapid prototyping and real-time

testing. The FPGA-based implementations were validated through comparison with Matlab simulations,

showing a high degree of agreement, with minor discrepancies attributable to the limitations of fixed-point

representation.

The FPIC strategy proved to be effective in stabilizing chaotic dynamics and driving the system to its

analytically determined fixed points. Moreover, the results revealed how control strength, defined by the

slave parameter gs, influences system behavior and convergence properties. Stability regions were

successfully identified for all systems, including critical bifurcation points and ranges of gs leading to

convergence or divergence. The developed prototyping platform offers a valuable tool for researchers

exploring chaos control in real-time embedded systems. The simplicity of the FPIC control law and its

suitability for fixed-point arithmetic make it an excellent candidate for low-power, high-speed applications

such as secure communications, cryptographic hardware, and nonlinear sensor networks. However, the

proposed approach has certain limitations. The use of fixed-point arithmetic imposes constraints on

numerical precision, which may affect stability in highly sensitive systems. Additionally, the scalability of

the implementation to more complex or higher-dimensional chaotic systems may be limited by the

availability of FPGA resources and increased computational demands.

Future efforts will explore the implementation of higher-dimensional chaotic systems by coupling multiple

distinct chaotic maps. Nonlinear coupling schemes and heterogeneous topologies will also be investigated,

extending the current approach toward more complex and realistic models. Additionally, FPGA

implementations of chaotic systems based on trigonometric functions or piecewise-smooth dynamics, such

as Chua’s circuit and the Tent Map, are planned. Furthermore, we plan to integrate adaptive control

strategies with the FPIC framework to enable real-time tuning of controller parameters, enhancing

robustness under varying system dynamics. Finally, the integration of adaptive control strategies and

intelligent tuning of FPIC parameters using machine learning or optimization algorithms represents a

promising direction for increasing the robustness and autonomy of chaos-based controllers in real-world

applications. Particularly, the exploration of machine learning techniques to optimize the gm and gs

parameters could lead to more efficient control laws and broaden the applicability of FPIC to nonlinear,

high-order, and coupled chaotic systems.

PROSPECTIVA VOL 23 N2.

REFERENCES

[1] L. Xiao, W. Jianzhen, and L. Hongqin, “Nonlinear System Identification based on Orthonormal

Wavelet,” IJIREEICE, vol. 4, no. 10, pp. 82–85, Oct. 2016, doi: 10.17148/IJIREEICE.2016.41017.

[2] F. Yang, X. An, and L. xiong, “A new discrete chaotic map application in image encryption

algorithm,” Phys Scr, vol. 97, no. 3, p. 035202, Mar. 2022, doi: 10.1088/1402-4896/ac4fd0.

[3] P. Fang, L. Dai, Y. Hou, M. Du, and W. Luyou, “The Study of Identification Method for Dynamic

Behavior of High‐Dimensional Nonlinear System,” Shock and Vibration, vol. 2019, no. 1, Jan. 2019,

doi: 10.1155/2019/3497410.

[4] N. Nguyen, L. Pham-Nguyen, M. B. Nguyen, and G. Kaddoum, “A Low Power Circuit Design for

Chaos-Key Based Data Encryption,” IEEE Access, vol. 8, pp. 104432–104444, 2020, doi:

10.1109/ACCESS.2020.2998395.

[5] A. Iqbal, “Chaos control of brushless direct current motor using sliding mode control with a low cost

hardware-in-loop validation,” Science Talks, vol. 14, p. 100453, Jun. 2025, doi:

10.1016/j.sctalk.2025.100453.

[6] J. Chen et al., “Intelligent robust control for nonlinear complex hydro-turbine regulation system

based on a novel state space equation and dynamic feedback linearization,” Energy, vol. 302, p.

131798, Sep. 2024, doi: 10.1016/j.energy.2024.131798.

[7] D. Das, I. Taralova, and J. J. Loiseau, “Time-delay Feedback Control of Fractional Chaotic Rössler

Oscillator,” IFAC-PapersOnLine, vol. 58, no. 5, pp. 90–95, 2024, doi: 10.1016/j.ifacol.2024.07.069.

[8] Y. Zhang et al., “Chaotic band-gap modulation mechanism for nonlinear vibration isolation systems

based on time-delay feedback control,” J Phys D Appl Phys, vol. 58, no. 1, p. 015311, Jan. 2025,

doi: 10.1088/1361-6463/ad8008.

[9] N. T. García, Y. A. G. Gomez, and V. H. Cespedes, “Robust control technique in power converter

with linear induction motor,” International Journal of Power Electronics and Drive Systems

(IJPEDS), vol. 13, no. 1, p. 340, Mar. 2022, doi: 10.11591/ijpeds.v13.i1.pp340-347.

[10] S. C. Trujillo, J. E. Candelo-Becerra, and F. E. Hoyos, “Analysis and Control of Chaos in the Boost

Converter with ZAD, FPIC, and TDAS,” Sustainability, vol. 14, no. 20, p. 13170, Oct. 2022, doi:

10.3390/su142013170.

[11] F. E. Hoyos, J. E. Candelo-Becerra, and C. I. Hoyos Velasco, “Application of Zero Average

Dynamics and Fixed Point Induction Control Techniques to Control the Speed of a DC Motor with

a Buck Converter,” Applied Sciences, vol. 10, no. 5, p. 1807, Mar. 2020, doi: 10.3390/app10051807.

[12] F. E. Hoyos Velasco, J. E. Candelo-Becerra, and A. Rincón Santamaría, “Dynamic Analysis of a

Permanent Magnet DC Motor Using a Buck Converter Controlled by ZAD-FPIC,” Energies (Basel),

vol. 11, no. 12, p. 3388, Dec. 2018, doi: 10.3390/en11123388.

[13] F. E. Hoyos, J. E. Candelo, and J. A. Taborda, “Selection and Validation of Mathematical Models

of Power Converters using Rapid Modeling and Control Prototyping Methods,” International

Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 3, p. 1551, Jun. 2018, doi:

10.11591/ijece.v8i3.pp1551-1568.

[14] F. E. Hoyos Velasco, J. E. Candelo, and J. I. Silva Ortega, “Performance evaluation of a DC-AC

inverter controlled with ZAD-FPIC,” INGE CUC, vol. 14, no. 1, pp. 9–18, Jan. 2018, doi:

10.17981/ingecuc.14.1.2018.01.

[15] C. Mohamed, K. Messaoudi, and L. Lamri, “Multi-level and real-time implementations using FPGA

devices of PWM techniques used for the control of static converters,” J Supercomput, vol. 81, no. 4,

p. 525, Feb. 2025, doi: 10.1007/s11227-024-06905-0.

PROSPECTIVA VOL 23 N2.

[16] A. Ravera, A. Oliveri, M. Lodi, and M. Storace, “FPGA Implementation of Nonlinear Model

Predictive Control for a Boost Converter with a Partially Saturating Inductor,” Electronics (Basel),

vol. 14, no. 5, p. 941, Feb. 2025, doi: 10.3390/electronics14050941.

[17] A. A. Nada and M. A. Bayoumi, “Development of embedded fuzzy control using reconfigurable

FPGA technology,” Automatika, vol. 65, no. 2, pp. 609–626, Apr. 2024, doi:

10.1080/00051144.2024.2313904.

[18] Q. Wang et al., “Theoretical Design and FPGA-Based Implementation of Higher-Dimensional

Digital Chaotic Systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63,

no. 3, pp. 401–412, Mar. 2016, doi: 10.1109/TCSI.2016.2515398.

[19] M. Y. Hamada, “Investigating the dynamics of generalized discrete logistic map,” Math Methods

Appl Sci, vol. 48, no. 4, pp. 5325–5336, Mar. 2025, doi: 10.1002/mma.10606.

[20] S. M. Mohamed, W. S. Sayed, L. A. Said, and A. G. Radwan, “Reconfigurable FPGA Realization

of Fractional-Order Chaotic Systems,” IEEE Access, vol. 9, pp. 89376–89389, 2021, doi:

10.1109/ACCESS.2021.3090336.

[21] S. Liu, Y. Wei, J. Liu, S. Chen, and G. Zhang, “Multi-Scroll Chaotic System Model and Its

Cryptographic Application,” International Journal of Bifurcation and Chaos, vol. 30, no. 13, p.

2050186, Oct. 2020, doi: 10.1142/S0218127420501862.

[22] O. Guillén-Fernández, A. Meléndez-Cano, E. Tlelo-Cuautle, J. C. Núñez-Pérez, and J. de J. Rangel-

Magdaleno, “On the synchronization techniques of chaotic oscillators and their FPGA-based

implementation for secure image transmission,” PLoS One, vol. 14, no. 2, p. e0209618, Feb. 2019,

doi: 10.1371/journal.pone.0209618.

[23] F. Capligins, A. Litvinenko, D. Kolosovs, M. Terauds, M. Zeltins, and D. Pikulins, “FPGA-Based

Antipodal Chaotic Shift Keying Communication System,” Electronics (Basel), vol. 11, no. 12, p.

1870, Jun. 2022, doi: 10.3390/electronics11121870.

[24] C. Mayo-Wilson, “Structural Chaos,” Philos Sci, vol. 82, no. 5, pp. 1236–1247, Dec. 2015, doi:

10.1086/684086.

[25] H. Castro and J. A. Taborda, “Rapid prototyping of chaotic generators using LabView-FPGA,” in

2012 IEEE 4th Colombian Workshop on Circuits and Systems (CWCAS), IEEE, Nov. 2012, pp. 1–

6. doi: 10.1109/CWCAS.2012.6404075.

[26] National Instruments, “LabVIEW User Manual.” Accessed: Jul. 06, 2025. [Online]. Available:

https://www.ni.com/docs/en-US/bundle/labview/page/user-manual-welcome.html

[27] MathWorks, “MATLAB.” Accessed: Jul. 06, 2025. [Online]. Available:

https://la.mathworks.com/help/matlab/index.html?s_tid=hc_panel

[28] I. Damaj, A. Zaher, and W. Lawand, “Optimizing FPGA implementation of high-precision chaotic

systems for improved performance,” PLoS One, vol. 19, no. 4, p. e0299021, Apr. 2024, doi:

10.1371/journal.pone.0299021.

[29] R. Babajans, D. Cirjulina, and D. Kolosovs, “Field-Programmable Gate Array-Based Chaos

Oscillator Implementation for Analog–Discrete and Discrete–Analog Chaotic Synchronization

Applications,” Entropy, vol. 27, no. 4, p. 334, Mar. 2025, doi: 10.3390/e27040334.

