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ABSTRACT 

 

This paper presents the hardware implementation of control algorithms based on the Fixed-Point Inducting 

Control (FPIC) technique applied to chaotic systems. Three discrete-time chaotic maps—Logistic, Fold, 

and Flip—were analyzed in both coupled and uncoupled configurations. For each system, equilibrium points 

were analytically determined. The control strategy was implemented using LabVIEW-FPGA to generate 

and stabilize chaotic behaviors in real time, and the results were validated against MATLAB simulations. 

Bifurcation diagrams were generated to identify parameter regions that lead to chaotic or stable behaviors. 

All systems were implemented using 16-bit fixed-point arithmetic, demonstrating the feasibility of FPGA-

based realization of FPIC-controlled chaotic systems. The proposed prototyping setup provides a valuable 

platform for rapid testing of chaos-based control strategies and their potential applications in secure 

communications and nonlinear systems. The results demonstrate that FPIC effectively stabilized chaotic 

behavior in all systems, with convergence to the analytical fixed point occurring near gs ≈ 0.5 for the 

Logistic Map and gs ≈ 0.748 for the Fold Map. Experimental FPGA results closely matched MATLAB 

simulations, confirming the accuracy and viability of the proposed implementation. 

 

Key Words: chaotic systems, FPIC control, LabVIEW, FPGA, bifurcation diagrams, discrete nonlinear 

maps. 
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RESUMEN 

 

Este artículo de investigación científica presenta la implementación en hardware de algoritmos de control 

basados en la técnica de Control por Inducción en Punto Fijo (FPIC) aplicada a sistemas caóticos. Se 

analizaron tres mapas caóticos en tiempo discreto—Logístico, Fold y Flip—tanto en configuraciones 

acopladas como no acopladas. Para cada sistema, se determinaron analíticamente los puntos de equilibrio. 

La estrategia de control fue implementada en tiempo real utilizando LabVIEW-FPGA con aritmética en 

punto fijo de 16 bits, y los resultados fueron validados mediante simulaciones en MATLAB. Se generaron 

diagramas de bifurcación para identificar las regiones de parámetros que conducen a comportamientos 

caóticos o estables. El entorno de prototipado desarrollado constituye una herramienta valiosa para la 

evaluación rápida de estrategias de control basadas en el caos y sus aplicaciones potenciales en 

comunicaciones seguras y sistemas no lineales. Los resultados demuestran que la técnica FPIC logró 

estabilizar efectivamente el comportamiento caótico en todos los sistemas, con convergencia al punto fijo 

analítico alrededor de gs ≈ 0.5 para el Mapa Logístico y gs ≈ 0.748 para el Mapa Fold. Los resultados 

experimentales en FPGA coincidieron estrechamente con las simulaciones en MATLAB, confirmando la 

precisión y viabilidad de la implementación propuesta. 

 

Palabras clave: sistemas caóticos, control FPIC, LabVIEW, FPGA, diagramas de bifurcación, mapas 

discretos no lineales. 

 

1. INTRODUCTION 

 

Chaotic systems are nonlinear dynamical systems that exhibit complex, aperiodic behavior and extreme 

sensitivity to initial conditions. Despite being deterministic, their unpredictable evolution makes them both 

a challenge and an opportunity in control engineering [1], [2]. In recent years, chaos theory has garnered 

increasing attention in areas such as secure communications, encryption, modeling biological systems, 

random number generation, and the control of power converters [3], [4]. However, controlling chaotic 

dynamics remains a significant challenge due to the inherent instability and sensitivity of such systems. 

 

Several control techniques have been proposed to stabilize chaotic systems around desired trajectories or 

equilibrium points [5], [6]. Traditional methods include feedback linearization, sliding mode control, and 

time-delayed feedback, among others [7], [8]. More recently, researchers have explored strategies that 

exploit the discrete-time structure of many chaotic maps, leading to simpler and faster control 

implementations suitable for digital hardware. Among them, the Fixed-Point Inducting Control (FPIC) 

technique has emerged as a promising approach due to its simplicity, robustness, and compatibility with 

fixed-point arithmetic [9], [10].  

 

FPIC represents an advanced approach to managing chaotic systems, utilizing techniques from control 

theory to stabilize and manipulate unpredictable behaviors. The FPIC methodology focuses on integrating 

feedback mechanisms that adaptively govern chaotic dynamics, particularly in systems susceptible to 

instability and sensitivity to initial conditions. The principle underlying FPIC is its capability to induce 

stability by ensuring that the average of the system’s behavior over time approaches a desired fixed point. 

This concept is closely related to Zero Average Dynamics (ZAD), another control strategy that aids in 

maintaining system stability. The combination of these two strategies creates a robust control framework 

wherein the FPIC technique can stabilize chaotic orbits prevalent in such systems [11], [12]. This property 

is especially beneficial when applied to power electronics, where chaotic behavior can significantly impact 

performance and reliability [9]. Particularly, the application of FPIC has been verified in controlling chaotic 

dynamics within power converters, improving system performance and stability under challenging 

conditions [13], [14]. 
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At the same time, Field-Programmable Gate Arrays (FPGAs) have become increasingly popular for 

implementing real-time control systems, thanks to their parallelism, low latency, and energy efficiency. 

Compared to microcontrollers or DSPs, FPGAs offer better performance for systems requiring deterministic 

response and fast execution cycles—features critical when implementing real-time controllers for chaotic 

systems [15], [16]. Furthermore, high-level platforms such as LabVIEW-FPGA allow rapid prototyping 

without requiring low-level HDL programming, significantly reducing development time and complexity 

[17], [18]. 

 

Despite these advances, few works have explored the direct implementation of chaos control strategies—

especially FPIC—on FPGA hardware using fixed-point arithmetic. Most studies remain limited to software 

simulations or focus on floating-point architectures that are not suitable for low-power or embedded 

applications. This represents a significant research gap, particularly in the context of real-time systems, 

where hardware resource efficiency is crucial. 

Real-time chaos control is particularly relevant in embedded systems and hardware-constrained 

environments, where unpredictable behavior can compromise stability or security. The use of discrete-time 

chaotic maps, such as the Logistic, Fold, and Flip Maps, provides a simplified yet representative modeling 

framework for studying complex nonlinear dynamics. These maps are widely used due to their analytical 

tractability and ease of implementation in digital hardware, making them ideal candidates for validating 

control strategies under limited computational resources [19]. 

 

Moreover, the combination of FPIC with FPGA implementation offers a compelling solution for 

applications requiring low latency and high reliability. The simplicity of FPIC, which avoids the need for 

system identification or heavy computation, aligns well with the hardware constraints of real-time systems. 

By leveraging fixed-point arithmetic and modular design in LabVIEW-FPGA, the approach presented here 

enables rapid iteration, scalability to multidimensional chaotic networks, and direct integration into low-

power devices [20], [21]. This flexibility supports a wide range of use cases, from chaos-based encryption 

to real-time control in nonlinear systems [22], [23]. 

 

In this work, we address this gap by presenting the design, implementation, and experimental evaluation of 

FPIC controllers for three one-dimensional discrete chaotic maps: the Logistic Map, the Fold Map, and the 

Flip Map. Both standalone and linearly coupled versions of these maps are considered. The control strategy 

is implemented using LabVIEW-FPGA, enabling real-time generation and stabilization of chaotic behavior 

with 16-bit fixed-point arithmetic. Bifurcation diagrams are obtained to analyze system dynamics under 

varying control parameters, and the FPGA results are validated against MATLAB simulations. The 

proposed system offers a flexible and reusable platform for the rapid prototyping of chaos-based control 

strategies, with potential applications in embedded systems, nonlinear control, and secure communications. 

 

2. METHODOLOGY 

 

The methodology adopted in this work involves design, hardware implementation, and experimental 

validation of FPIC controllers applied to chaotic systems using the LabVIEW-FPGA platform. The process 

is structured into five key stages: mathematical modeling of chaotic systems, formulation of the FPIC 

controller, hardware implementation using an FPGA, simulation validation, and experimental testing. 

 

2.1. Chaotic Systems in Nonlinear Dynamics 

 

A chaotic system is a nonlinear dynamic system that exhibits disordered behavior despite being governed 

by deterministic laws. One of its defining characteristics is extreme sensitivity to initial conditions, where 

even minimal variations in the starting point can lead to vastly different trajectories over time [24]. This 
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property, often referred to as the butterfly effect, is a hallmark of chaos and has been extensively studied in 

systems across physics, biology, and engineering. 

 

In this study, three one-dimensional discrete-time chaotic maps were selected for analysis and 

implementation: The Logistic Map, the Fold Map, and the Flip Map [25]. These systems were chosen due 

to their well-known nonlinear dynamics and frequent use in studies of chaos theory. Their mathematical 

formulations are given by equations (1), (2), and (3), respectively: 

 

𝑥(𝑘 + 1) = 𝑟𝑥(𝑘)(1 − 𝑥(𝑘)) (1) 

𝑥(𝑘 + 1) = 𝑟 + 𝑥(𝑘) + 𝑥2(𝑘) (2) 

𝑥(𝑘 + 1) = −(1 + 𝑟)𝑥(𝑘) + 𝑥3(𝑘) (3) 

 

To explore higher-dimensional dynamics and more complex behaviors, coupled versions of these maps were 

also implemented. A coupled chaotic system can be constructed by linking two identical chaotic maps, either 

linearly or nonlinearly [21]. In this work, only linear coupling was considered, with formulations as shown 

in equations (4) and (5): 

 

(
𝑥(𝑘 + 1)

𝑦(𝑘 + 1)
) = (

𝑓𝑥(𝑘) + 𝜖(𝑦(𝑘) − 𝑥(𝑘))

𝑓𝑦(𝑘) + 𝜖(𝑥(𝑘) − 𝑦(𝑘))
) (4) 

(
𝑥(𝑘 + 1)

𝑦(𝑘 + 1)
) = (

𝑓𝑥(𝑘) + 𝜖 (𝑓𝑦(𝑘) − 𝑓𝑥(𝑘))

𝑓𝑦(𝑘) + 𝜖 (𝑓𝑥(𝑘) − 𝑓𝑦(𝑘))
) (5) 

 

Here, fx and fy represent the chaotic functions corresponding to the right-hand sides of equations (1)–(3). 

The linear coupling approach allows the creation of symmetrical systems where each map influences the 

behavior of the other through a shared coupling term. These configurations offer a stepping stone toward 

more complex systems that involve multiple chaotic maps with heterogeneous dynamics or nonlinear 

interactions. While this work focuses on linearly coupled maps, future efforts may extend this approach to 

nonlinear coupling schemes or networks of multiple chaotic generators interacting through various 

topologies. Such systems are particularly relevant in modeling complex phenomena in nature and in 

engineering applications, such as secure communications, where the synchronization of chaotic signals 

plays a crucial role. 

 

2.2. Fixed-Point Inducting Control Theory 

 

Fixed-Point Inducting Control (FPIC) is a control technique designed to stabilize the behavior of chaotic 

systems by driving their trajectories toward a fixed point. Since chaotic systems are inherently unstable and 

extremely sensitive to initial conditions, a control mechanism is necessary to enforce predictable and stable 

dynamics. FPIC was first introduced approximately a decade ago and has since been applied in various 

domains, including power electronics and nonlinear mechanical systems [10]. 

 

The FPIC strategy is grounded in a theoretical result that allows the stabilization of a fixed point in discrete-

time chaotic systems [14]. Consider a system described by a difference equation of the form: 
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𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘)) (6) 

 

Where f(x(k)) is a nonlinear, potentially chaotic function. A point x* is said to be a fixed point if f(x*)=x*. 

To determine whether this fixed point can be stabilized, the system is linearized around x*, and the Jacobian 

matrix J0 is evaluated at that point. If the eigenvalues of J0 satisfy the following condition: 

 

|𝜆𝑖(𝐽0)| = |𝜆𝑖 (
𝜕𝑦
𝜕𝑥

|𝑥∗)| < 1 ∀𝑖 (7) 

 

Then there exists a control signal:  

 

𝑓(𝑘) =
𝑓(𝑥(𝑘)) + 𝑁𝑥∗

𝑁 + 1
 (8) 

 

That ensures stabilization of the system at the fixed point x*, provided that the scalar gain N is positive and 

sufficiently large. In this context, the control law in equation (8) can be rewritten as: 

 

𝑓(𝑘) = 𝑔𝑚𝑓𝑥(𝑘) + 𝑔𝑠𝑥∗ (9) 

 

Where gm is referred to as the master parameter and gs as the slave parameter. These coefficients satisfy: 

 

𝑔𝑚 =
1

𝑁 + 1
 (10) 

𝑔𝑠 =
𝑁

𝑁 + 1
 (11) 

 

Ensuring that gm+gs=1. 

 

The roles of the master and slave parameters are fundamental in shaping the system’s response. The master 

parameter gm controls the influence of the original (chaotic) system on the overall dynamics, while the slave 

parameter gs dictates the extent to which the control input nudges the system toward the fixed point x*. When 

gs is close to 1 (and hence gm close to 0), the system exhibits strong convergence toward x*; conversely, 

when gm dominates, chaotic behavior re-emerges. Thus, to ensure stabilization, N must be chosen 

sufficiently large, as required by the FPIC theorem. 

 

This theoretical formulation serves as the basis for implementing FPIC in various types of chaotic maps, as 

detailed in the following sections. Each system is stabilized using the control law in equation (9), with fixed-

point arithmetic tailored for real-time hardware execution. 

 

2.3. Controller Design 

 

The implementation of FPIC control begins with the mathematical reformulation of the original chaotic 

system by incorporating the control input. Starting from equation (6), the controlled system can be expressed 

as: 
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𝑥(𝑘 + 1) = 𝑔𝑚𝑓(𝑥(𝑘)) + 𝑔𝑠𝑥∗ (12) 

 

where x* is the desired fixed point of the system. Substituting the definitions of gm and gs from equations 

(10) and (11), the equation becomes: 

 

𝑥(𝑘 + 1) =
1

1 + 𝑁
𝑓(𝑥(𝑘)) +

𝑁

1 + 𝑁
𝑥∗ (13) 

 

In this form, the control law blends the original chaotic function with a constant input derived from the 

desired fixed point. The effectiveness of the controller relies on selecting a value of N (and hence gs) that 

ensures convergence toward x*. 

 

To determine the fixed point for each chaotic system, the steady-state condition is applied, assuming the 

system reaches equilibrium when x(k+1)=x(k)=x*. This leads to: 

 

𝑥∗ = 𝑓(𝑥∗) (14) 

Solving equation (14) for each chaotic map yields the corresponding fixed points [25]: 

 

• Logistic Map 

 

𝑥∗ = 1 −
1

𝑟
 (15) 

 

• Fold Map 

 

𝑥∗ = ±√𝑟 (16) 

 

• Flip Map 

 

𝑥∗ = 0, 𝑥∗ = ±√−𝑟 (17) 

 

These expressions define the fixed points at which control is applied. Notably, while the Logistic Map has 

a single stable fixed point, the Fold and Flip Maps may yield two or more possible fixed points depending 

on the sign and magnitude of the gain parameter r. 

 

An essential conceptual insight from equation (13) is the interpretation of gm as the weighting of the original 

(unstable) system dynamics, while gs governs the strength of the control action. Since gm+gs=1, increasing 

gs enhances stability but reduces system responsiveness to chaotic behavior, and vice versa. Therefore, a 

proper selection of N is crucial to ensure a balance between stability and dynamical performance. 

 

By substituting the expressions of the chaotic maps (1), (2), and (3) into equation (13), the controlled 

versions of the Logistic, Fold, and Flip systems are obtained. Additionally, for linearly coupled systems, the 

FPIC-controlled equations are derived in the form: 
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𝑥(𝑘 + 1) = 𝑔𝑚𝑓𝑥(𝑥(𝑘)) + 𝑔𝑠𝑥∗ (18) 

𝑦(𝑘 + 1) = 𝑔𝑚𝑓𝑦(𝑦(𝑘)) + 𝑔𝑠𝑦∗ (19) 

 

Where fx and fy denote the chaotic maps, and x*, y* are the respective fixed points. In this configuration, both 

subsystems are synchronized in their gain and control parameters, resulting in symmetrical controlled 

dynamics. This design methodology enables the practical implementation of chaos control through simple 

arithmetic operations—additions and multiplications—which are efficiently handled using fixed-point 

representation in FPGA hardware. 

 

2.4. FPIC Control Implementation in Chaotic Systems 

 

The experimental implementation of chaotic systems and their respective FPIC controllers was conducted 

according to the methodology described in [25]. LabVIEW-FPGA was used to translate the control 

algorithms into hardware and deploy them on a Virtex II FPGA. This platform enables graphical 

programming and real-time deployment on reconfigurable hardware (FPGAs), facilitating rapid prototyping 

and efficient use of hardware resources [17], [26]. For software validation, MATLAB was employed due to 

its robust numerical capabilities, especially in simulating nonlinear dynamic systems and generating 

bifurcation diagrams [19], [27]. 

 

All calculations were performed using 16-bit fixed-point representation, with 5 bits assigned to the integer 

part and 11 bits to the fractional part. This precision level was selected as a trade-off between computational 

accuracy and hardware efficiency. Figure 1 illustrates the block diagrams for the three chaotic functions 

implemented in LabVIEW FPGA.  

 

These diagrams directly correspond to the mathematical definitions in equations (1), (2), and (3). For 

simplicity, feedback paths (used to store the previous value x(k)) are not shown in the figure. In practice, 

feedback was implemented by initializing registers with the initial condition x(0) before execution. 

 

Figure 1. Implemented chaotic functions: (a) Logistic, (b) Fold, (c) Flip. All have fixed-point (FXP) inputs 

x(k), Gain, and the constant 1; the output is fixed-point fx(k), and the boxes represent the computations.  

Figura 1. Funciones caóticas utilizadas: (a) Logística, (b) Pliegue, (c) Volteo. Todas las funciones tienen 

entradas de punto-fijo x(k), Gain, y la constante 1, la salida es de punto-fijo fx(k), y las cajas representan los 

cálculos realizados. 

 

 
 

The FPIC control implementation is illustrated in Figure 2. In this setup, the slave parameter gs is defined 

as a configurable input, while the master parameter is computed internally as gm=1-gs. The user can also 

input the gain parameter r and the fixed point x*. The system then performs a sweep over a specified range 

of gs values to study the effect of control strength on the system dynamics. 

(a) (b) (c) 
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Figure 2. FPIC control implementation: (a) FPIC controller, (b) General connection diagram. Inputs fx(k), 

1, gs, and x*, and output x(k+1) are formatted in fixed-point (FXP) representation. Boxes represent the 

calculations.  

Figura 2. Implementación del control FPIC: (a) Controlador FPIC, (b) Diagrama general de conexión. Las 

entradas fx(k), 1, gs, and x*, y la salida x(k+1) tienen formato de punto-fijo (FXP). Las cajas representan las 

operaciones realizadas.  

 

 
 

It is important to note that the analytical calculation of the fixed point was not performed in hardware for 

the Fold and Flip maps, due to the square root operations involved. Square root calculations typically require 

sequential hardware circuits that span multiple clock cycles, reducing system performance. In order to 

maintain one-clock-cycle combinatorial logic for all arithmetic operations, fixed-point values of x* were 

precomputed externally and loaded into the system. In contrast, the Logistic Map allows for the direct 

computation of x* from a simple expression (equation 15), which can be implemented directly in the FPGA 

logic. Figure 2(b) shows the complete control diagram, where the chaotic function block is connected to the 

FPIC control logic and the parameter sweep module. 

 

To collect and visualize system behavior under different control configurations, a testbench was developed 

using a two-level loop structure in the LabVIEW-FPGA environment. The outer loop (green) controls the 

incremental variation of the slave parameter gs, based on initial and final values defined by the user. For 

each value of gs, the inner loop (yellow) executes the chaotic system and stores the output values in on-chip 

memory using a Direct Memory Access (DMA) module. 

 

During each iteration, the chaotic system is allowed to evolve over 4000 time steps. To avoid transient 

effects, only the final 128 output values are saved in memory. Each output sample is paired with the 

corresponding gs value, resulting in 128 × 128 = 16,384 saved data points. The saved values are 16 bits 

wide, stored as pairs (gs, x(k)) in 32-bit memory addresses. This data is later extracted for post-processing 

and visualization in MATLAB or other analysis tools. 

 

This setup enables the real-time generation of bifurcation diagrams and the dynamic analysis of controlled 

chaotic systems with fine-grained resolution, providing a valuable platform for testing and validating FPIC-

based chaos controllers in hardware. 

 

 

(a) 

(b) 
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2.5. Coupled Chaotic Systems 

The implementation of coupled chaotic systems was conducted using the structure shown in Figure 3. In 

this configuration, two identical chaotic maps are connected through a linear coupling mechanism, enabling 

the analysis of higher-dimensional chaotic behaviors while maintaining simplicity in hardware 

implementation.  

 

In the controlled coupled system, the FPIC control strategy is applied simultaneously to both subsystems. 

The same gain parameter r, fixed point x*=y*, and control parameters gs and gm are used for each chaotic 

map. This symmetry ensures that the dynamic behavior of both systems remains synchronized, simplifying 

the overall control logic. 

 

As illustrated in Figure 3(b), each chaotic subsystem is controlled individually using the FPIC approach 

described in previous sections. The linear coupling is introduced by allowing each subsystem to influence 

the other through a weighted term. However, in this work, the coupling is purely through shared parameters, 

rather than direct cross-feedback. Figure 3(c) shows the general connection diagram for the coupled 

implementation. 

 

By using the same control gains and fixed points in both chaotic maps, the system maintains balance and 

exhibits predictable behavior under control. This setup also facilitates scalability to more complex 

configurations, including asymmetric or heterogeneous coupling, which may be explored in future work. 

The controlled coupled system provides a framework for evaluating synchronization and stabilization 

strategies in multidimensional chaotic environments, with potential applications in secure communication 

networks and distributed nonlinear systems. 

 

Figure 3. Coupled implementation: (a) Coupled system, (b) Coupled controller, (c) System connection 

diagram. All inputs and outputs are formatted in fixed-point (FXP) representation, and the boxes represent 

the performed calculations by each block.  

Figura 3. Implementación del sistema acoplado: (a) Sistema acoplado, (b) Controlador acoplado, (c) 

Diagrama de interconexión del sistema. Todas las entradas y salidas están representadas en punto-fijo 

(FXP), y las cajas representan los cálculos realizados por cada bloque. 

 

 
 

(a) (b) 

(c) 
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2.6. Test System for Controlled Chaotic Maps 

Figure 4 presents the flow diagram of the test system developed for analyzing the controlled chaotic maps 

on an FPGA. The architecture consists of two nested loops: an outer loop responsible for regulating the 

variation of the slave parameter gs, and an inner loop that executes the chaotic system under test and manages 

data acquisition. The outer loop (shown in green) iteratively increases gs from a user-defined initial value to 

a final value, computing the step size accordingly. This loop determines the number of distinct values of gs 

that will be evaluated. For this project, the number of steps was fixed to 128, meaning that 128 different 

values of gs are tested in each experiment. 

 

The inner loop (shown in yellow) simulates the evolution of the chaotic system for each value of gs. It 

performs 4000 iterations to allow the system to reach a steady-state behavior, thereby minimizing the 

influence of initial transients. However, only the final 128 output samples are stored for analysis, as these 

represent the system’s long-term response. To record the results, a Direct Memory Access (DMA) module 

was used to store output values in the FPGA’s internal RAM. Each entry in memory corresponds to a pair 

(gs,x(k)), stored as two 16-bit values in a 32-bit memory word. A total of 128 output values are recorded for 

each of the 128 gs steps, resulting in 16,384 saved data points per test run. 

 

It is essential to note that the initial conditions, x(0) and y(0), remain constant throughout the experiment, 

as they are hard-coded into the register’s initialization. Changing these values requires a new synthesis of 

the FPGA design. If a single (non-coupled) system is tested, the second initial condition y(0) is ignored. 

This test system enables high-resolution visualization of the system’s response across a range of control 

strengths, allowing for the generation of bifurcation diagrams and precise characterization of stable and 

chaotic regimes. The results obtained from this framework are presented and discussed in the following 

section. 

 

Figure 4. General flow diagram of the FPGA VI (Virtual Instruments) 

Figura 4. Diagrama general de flujo del Instrumento Virtual (VI) en FPGA 
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3. RESULTS AND DISCUSSION 

 

3.1. Logistic Map Control Experiments 

The first set of experiments focused on the Logistic Map, both in its uncontrolled and FPIC-controlled 

versions. Initially, the system was tested without control, and the results were compared to Matlab 

simulations to validate the accuracy of the FPGA implementation. The uncontrolled system showed good 

agreement with simulation results, as previously reported in [25]. Subsequently, the FPIC control strategy 

was applied, and the system behavior was evaluated through bifurcation diagrams. Figure 5 presents the 

results for the controlled Logistic Map with initial condition x(0) = 0.4, gain parameter r = 4, and fixed 

point x* = 0.75, as computed from equation (15). The value r=4 was chosen because, in the absence of 

control, the system exhibits chaotic behavior at this gain level, thus providing a suitable test case for 

stabilization using FPIC. 

 

Figure 5. Controlled logistic map, x(0)=0.4, r=4, x*=0.75, gs=[0,1]: (a) Matlab simulation, (b) LabVIEW-

FPGA Response 

Figura 5. Mapa logístico controlado, x(0)=0.4, r=4, x=0.75, gs=[0,1]: (a) Simulación en Matlab, (b) 

Respuesta en LabVIEW-FPGA 

 

 
 

Two notable bifurcation points are visible in the diagram. The first is a flip bifurcation to a period-2 orbit 

occurring around gs≈0.276, and the second is a flip bifurcation to a period-1 orbit near gs≈0.5. For low values 

of gs, the system remains chaotic, while increasing leads to greater stability. For gs>0.5, the system becomes 

fully stabilized around the fixed point x=0.75, as expected from the theory. Although both Matlab and FPGA 

implementations exhibit similar bifurcation structures, some minor differences were observed. In the 

MATLAB simulation, the system demonstrates strong convergence to a single output value beyond gs = 

0.5. However, in the FPGA response, minor oscillations are visible near the fixed point around gs=0.5. For 

instance, the output slightly alternates between two values close to 0.75, indicating a weaker stability margin 

in this region. 

 

This discrepancy prompted a fixed-point simulation in MATLAB using the same 16-bit precision as in the 

FPGA. The simulation confirmed that hardware errors did not cause the oscillations but rather are inherent 

to the reduced numerical resolution. When using floating-point precision, the oscillations disappear, further 

validating the impact of fixed-point representation on system dynamics. The coupled Logistic Map 

implementation yielded results similar to the single system case. The bifurcation structure and stability 

transition points were preserved, although minor discrepancies were observed around the transition 
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thresholds in the results between MATLAB and FPGA. These are consistent with the behavior described 

above and are attributable to the fixed-point arithmetic in the hardware implementation. 

 

3.2. Fold Map Experiments 

The next set of experiments focused on the Fold Map. Both the standalone and the coupled versions of this 

chaotic system were evaluated under FPIC control. The initial condition for the single system was set to 

x(0) = 0, with a gain parameter r = -2, resulting in a fixed point x* = ±1.4142, as per equation (16). This 

value of r was selected because it induces instability in the uncontrolled system, providing a good scenario 

to evaluate the controller’s effectiveness. 

 

Figure 6 displays the bifurcation diagrams obtained from the MATLAB simulation and the FPGA 

implementation of the controlled Fold Map. The system reaches a stable regime for gs > 0.325; however, it 

does not converge to the analytically computed fixed point x* until gs > 0.748. For intermediate values of 

gs, the system stabilizes to other values depending on the strength of the control, highlighting the progressive 

influence of the FPIC mechanism. The differences between the MATLAB and FPGA results in this case are 

minimal and can be considered negligible. As with the Logistic Map, a slight discrepancy appears around 

the transition to stability, but it does not significantly impact the interpretation of the system’s behavior. 

 

Figure 6. Controlled Fold Map x(0)=0, r=-2, x*=1.4142, gs=[0,1]. (a) Matlab Simulation, (b) LabVIEW-

FPGA Response 

Figura 6. Mapa Fold controlado con x(0)=0, r=-2, x*=1.4142, gs=[0,1]. (a) Simulación en Matlab, (b) 

Respuesta en LabVIEW-FPGA 

 

 
 

Figure 7 shows the response of the controlled coupled Fold Map, where initial conditions were set to 

x(0)=0.4, y(0)=0.3, with gain r=-2, coupling coefficient α=0.275, and fixed points x=y*=-1.4142. The 

system becomes stable for gs>0.582, with convergence to the fixed point visible beyond gs≈0.748. As in the 

previous case, for intermediate values of gs, the system reaches a stable regime but not necessarily at the 

fixed point. 

 

Again, the differences between the Matlab simulation and FPGA implementation are present but limited. 

These discrepancies are primarily observed near the stability threshold and can be attributed to fixed-point 

resolution constraints, as previously discussed. Additional experiments with other values of x*, including 

the negative branch of the solution 𝑥∗ = −√2, produced consistent results. The system exhibited similar 

      



PROSPECTIVA VOL 23 N2. 

 

stabilization behavior and convergence characteristics under FPIC control, confirming the reproducibility 

and reliability of the proposed hardware implementation. 

 

Figure 7. Controlled Coupled Fold Map x(0)=0.4, y(0)=0.3, r=-2, ε=0.275. (a) x*=y*=-1.4142, gs=[0,1]. 

(a) Matlab Simulation, (b) LabVIEW-FPGA Response 

Figura 7. Mapa Fold acoplado y controlado con x(0)=0.4, y(0)=0.3, r=-2, ε=0.275. (a) x*=y*=-1.4142, 

gs=[0,1]. (a) Simulación en Matlab, (b) Respuesta en LabVIEW-FPGA 

 

 
 

3.3. Flip Map Experiments  

The final set of experiments evaluated the Flip Map under FPIC control. As with the previous systems, both 

standalone and coupled configurations were tested to examine the behavior of the control strategy in 

different settings. Figure 8 shows the results for the controlled Flip Map with initial condition x(0) = 4, gain 

parameter r = 2, and fixed point x* = 0, in accordance with equation (17). In this case, the slave parameter 

gs was varied over the interval [0, 2], allowing for the observation of the system’s behavior under both weak 

and strong control influences. The system exhibits stable behavior around the fixed point x*=0 for the 

interval 0.67 < gs < 1.34. Interestingly, this experiment shows that the system can remain stable even for gs 

> 1, although stability is eventually lost when gs exceeds approximately 1.65. This highlights the importance 

of proper parameter selection in FPIC: excessive control input may lead to destabilization rather than 

convergence. 

 

Figure 9 presents the response of the controlled coupled Flip Map, using initial conditions x(0)=4, y(0)=0.3, 

gain r=2, coupling factor α=0.275, and fixed points x*=y*=-2. In this configuration, the system reaches a 

stable regime for gs>0.6; however, convergence to the fixed point x*=y*=-2 is only observed beyond gs 

≈0.88. These results are consistent with the theoretical behavior of the FPIC-controlled Flip Map. As with 

previous systems, intermediate values lead to stabilization in regions close to, but not precisely at, the fixed 

point. This phenomenon is expected due to the gradual influence of the control signal and the nonlinear 

dynamics of the map. 

 

Additional experiments were conducted for both the standalone and coupled Flip Map using different fixed 

points, including x*=2 and x*=-2, confirming the robustness of the FPIC strategy. The system consistently 

transitioned from chaotic behavior to stable convergence as the gain (gs) increased, and the observed 

behavior aligned closely with both MATLAB simulations and FPGA implementations. Minor deviations, 
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as observed in previous cases, were attributed again to the effects of fixed-point arithmetic on system 

resolution. 

 

Figure 8. Controlled Flip Map x(0)=0.4, r=2, x*=0 and gs=[0,2]. (a) Matlab Simulation, (b) FPGA 

Response 

Figura 8. Mapa Flip controlado con x(0)=0.4, r=2, x*=0 and gs=[0,2]. (a) Simulación en Matlab, (b) 

Respuesta en FPGA 

 

 
 

Figure 9. Controlled Coupled Flip Map x(0)=0.4, y(0)=0.3, =0.275, r=2, x*=y*=-2 and gs=[0,1]. (a) 

Matlab Simulation, (b) FPGA Response 

Figura 9. Mapa Flip acoplado controlado con x(0)=0.4, y(0)=0.3, =0.275, r=2, x*=y*=-2 and gs=[0,1]. 

(a) Simulación en Matlab, (b) Respuesta en FPGA 

 

 
 

Compared to previous studies that implemented chaos control or chaotic signal generation on FPGA 

hardware, the present work provides a simplified and fully fixed-point implementation of the FPIC strategy, 

enabling real-time bifurcation analysis and stabilization. For example, Trujillo et al. applied FPIC along 

with ZAD and TDAS control strategies in a Boost converter, but their implementation was limited to 

simulations and did not explore FPGA-based hardware realization or bifurcation tracking [10]. Similarly, 

Guillén-Fernández et al. focused on chaotic oscillator synchronization for secure communications using 
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FPGA, but without direct control of bifurcations or parameter sweeps [22]. Mohamed et al. proposed 

fractional-order chaotic systems in FPGA, yet their implementation involved floating-point operations and 

lacked real-time adaptability [20]. More recently, Damaj et al. developed high-speed Lorenz system cores 

on FPGA, prioritizing throughput and precision [28], while Babajans et al. explored hybrid synchronization 

of analog–digital chaotic oscillators using fixed-point arithmetic [29]. However, neither addressed 

stabilization through live parameter control. In contrast, our approach combines analytical fixed-point 

design with dynamic parameter sweeps, demonstrating both control effectiveness and low-resource FPGA 

deployment suitability. 

 

4. CONCLUSIONS 

 

This work demonstrates the successful hardware implementation of FPIC-controlled chaotic systems using 

LabVIEW and an FPGA. Three well-known one-dimensional chaotic maps—the Logistic, Fold, and Flip 

Maps—were modeled, analyzed, and stabilized using the Fixed-Point Inducing Control technique. Both 

standalone and linearly coupled configurations were evaluated, providing insight into the scalability and 

flexibility of the proposed control approach. All systems were implemented on a Virtex II FPGA using 

fixed-point arithmetic with 16-bit precision. The combination of LabVIEW-FPGA’s graphical 

programming interface and the efficient use of FPGA resources enabled rapid prototyping and real-time 

testing. The FPGA-based implementations were validated through comparison with Matlab simulations, 

showing a high degree of agreement, with minor discrepancies attributable to the limitations of fixed-point 

representation. 

 

The FPIC strategy proved to be effective in stabilizing chaotic dynamics and driving the system to its 

analytically determined fixed points. Moreover, the results revealed how control strength, defined by the 

slave parameter gs, influences system behavior and convergence properties. Stability regions were 

successfully identified for all systems, including critical bifurcation points and ranges of gs leading to 

convergence or divergence. The developed prototyping platform offers a valuable tool for researchers 

exploring chaos control in real-time embedded systems. The simplicity of the FPIC control law and its 

suitability for fixed-point arithmetic make it an excellent candidate for low-power, high-speed applications 

such as secure communications, cryptographic hardware, and nonlinear sensor networks. However, the 

proposed approach has certain limitations. The use of fixed-point arithmetic imposes constraints on 

numerical precision, which may affect stability in highly sensitive systems. Additionally, the scalability of 

the implementation to more complex or higher-dimensional chaotic systems may be limited by the 

availability of FPGA resources and increased computational demands. 

 

Future efforts will explore the implementation of higher-dimensional chaotic systems by coupling multiple 

distinct chaotic maps. Nonlinear coupling schemes and heterogeneous topologies will also be investigated, 

extending the current approach toward more complex and realistic models. Additionally, FPGA 

implementations of chaotic systems based on trigonometric functions or piecewise-smooth dynamics, such 

as Chua’s circuit and the Tent Map, are planned. Furthermore, we plan to integrate adaptive control 

strategies with the FPIC framework to enable real-time tuning of controller parameters, enhancing 

robustness under varying system dynamics. Finally, the integration of adaptive control strategies and 

intelligent tuning of FPIC parameters using machine learning or optimization algorithms represents a 

promising direction for increasing the robustness and autonomy of chaos-based controllers in real-world 

applications. Particularly, the exploration of machine learning techniques to optimize the gm and gs 

parameters could lead to more efficient control laws and broaden the applicability of FPIC to nonlinear, 

high-order, and coupled chaotic systems. 
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