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RESUMEN 

A partir del desafío existente en las imágenes hiperespectrales relacionado con la identificación de mé-

todos eficaces y eficientes en la detección de materiales, ante la alta dimensionalidad asociada a las 

bandas espectrales, en este artículo se propone como aporte un nuevo método para la detección de as-

besto en imágenes hiperespectrales, basado en la aplicación del método de Simpson para el cálculo del 

área bajo la curva de la firma espectral del asbesto-cemento y la diferencia entre áreas con pixeles de 

asbesto y de otros materiales. Para el desarrollo de la presente investigación, fueron definidas 5 fases 

metodológicas a saber: F1. Obtención de los pixeles de muestra de asbesto-cemento y de otros materia-

les, F2. Determinación del píxel característico normalizado de asbesto-cemento y su área bajo la curva, 

F3. Implementación del método e identificación de los umbrales de detección con pixeles de asbesto y 

de otros materiales.  F4. Despliegue del método sobre la imagen hiperespectral de referencia, F5. Eva-

luación de la eficacia y la eficiencia del método con respecto al método de la correlación. A nivel de los 

resultados, se obtuvo que el método propuesto obtuvo una mayor efectividad para la detección de as-

besto-cemento entre las bandas 48 y 157. Del mismo modo, se obtuvo que a nivel computacional, el 

método propuesto es 1.79% más eficiente que el método de la correlación, el cual es uno de los más 

difundidos en la detección de materiales en imágenes hiperespectrales. A partir de los resultados obte-

nidos, el método propuesto puede servir de referencia para ser extrapolado en la detección de otros 

materiales en estas imágenes, así como ser integrado en sistemas de monitorización de materiales a partir 

de imágenes hiperespectrales.  
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ABSTRACT 

Based on the challenge in hyperspectral images related to identifying effective and efficient methods for 

material detection, given the high dimensionality associated with spectral bands, this article proposes a 

novel method for asbestos detection in hyperspectral images. The method is based on the application of 

Simpson's method to calculate the area under the curve of the asbestos-cement spectral signature and 

the difference between areas corresponding to pixels of asbestos and other materials. For the develop-

ment of this research, five methodological phases were defined as follows: F1. Acquisition of sample 

pixels of asbestos-cement and other materials, F2. Determination of the normalized characteristic pixel 

of asbestos-cement and its area under the curve, F3. Implementation of the method and identification of 

detection thresholds using pixels of asbestos and other materials, F4. Deployment of the method on the 

reference hyperspectral image, F5. Evaluation of the method’s effectiveness and efficiency compared to 

the correlation method. In terms of results, the proposed method showed greater effectiveness in detect-

ing asbestos-cement within the spectral bands 48 to 157. Similarly, it was found that, computationally, 

the proposed method is 1.79% more efficient than the correlation method, which is one of the most 

widely used approaches for material detection in hyperspectral images. Based on these results, the pro-

posed method can serve as a reference for extrapolation to the detection of other materials in these 

images and can also be integrated into material monitoring systems using hyperspectral images. 

 

Keywords: Hyperspectral images, asbestos detection, Simpson's method, remote sensing. 

 

1. Introduction 

Remote sensing can be defined as a technology that enables the acquisition and processing of infor-

mation about the characteristics of objects or areas on the Earth's surface without direct contact, using 

electromagnetic radiation as the means of interaction and sensors mounted on satellites, airplanes, or 

drones [1], [2], [3]. Among the main advantages of remote sensing is its ability to provide large-scale 

and real-time data efficiently, allowing the monitoring of environmental changes such as crop health or 

deforestation with a frequency that would be difficult to achieve through traditional methods, which are 

more limited in spatial and temporal scope [4], [5], [6], [7]. Furthermore, since remote sensing tech-

niques are non-invasive, they do not alter the observed environment, unlike some traditional methods, 

which can be destructive or intrusive [8]. 

 

One of the most widely used remote sensing techniques is hyperspectral imaging, an advanced technol-

ogy that combines spectroscopy with traditional imaging, enabling data capture in three dimensions: 

two spatial dimensions (x, y) and one spectral dimension (λ). This three-dimensional structure is known 

as a data cube due to its ability to store detailed information about the spectral composition of each pixel 

in an image [9], [10], [11]. In this structure, each layer of the data cube represents an image at a specific 

wavelength, allowing for the analysis of spectral variation across spatial dimensions [12]. In a hyper-

spectral image, each pixel corresponds to a vector containing information from multiple spectral bands, 

known as a spectral signature, which provides a detailed representation of the spectral properties of each 

material [13], [14]. Spectral signatures enable the accurate classification of different types of land cover, 

such as vegetation, rocks, artificial formations, and other materials, through the analysis of the unique 

spectral patterns of each material [15]. 

 

Several studies have been conducted on asbestos detection using hyperspectral images. For instance, in 

[16] and [17], hyperspectral images in the shortwave infrared range (SWIR: 1000–2500 nm) were used 

to detect asbestos minerals such as amosite, crocidolite, and chrysotile in cement matrices, employing 

principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA) for sam-

ple classification. Similarly, in [18] and [19], hyperspectral images were used to identify and separate 

materials containing asbestos in construction and demolition waste, utilizing multivariate analysis meth-

ods for material classification. Finally, in [20] and [21], procedures have been developed for recognizing 

asbestos-cement roofs to assess their deterioration using hyperspectral images, enabling the mapping of 

asbestos-cement roofs and the estimation of asbestos fiber abundance on the surface. 
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In terms of the challenges in the field of hyperspectral imaging, it is important to note that these images 

contain a large number of spectral bands, resulting in high dimensionality. This increases computational 

costs and makes them difficult to process and analyze using traditional machine learning methods [22], 

[23], [24], [25]. Similarly, regarding the application of deep network-based models in the domain of 

hyperspectral images, the available training samples are often limited, making training challenging as it 

typically requires a large number of samples [25]. Moreover, the implementation of sophisticated tech-

niques such as deep learning requires significant hardware and computational capacity to effectively 

address the detection and classification of materials [26]. Therefore, there is a need for alternative meth-

ods that are less complex and enable the effective and efficient detection of materials. 

 

Based on the above, this article proposes a new method for detecting asbestos in hyperspectral images, 

which is based on comparing the areas under the curve of the characteristic pixel of asbestos with respect 

to the other pixels in the image, using Simpson's method for this purpose. This method for calculating 

the area divides the curve into an even number of equal subintervals, approximating each pair of subin-

tervals with a parabola that passes through three equidistant points on the axis, allowing for a more 

accurate estimation by considering the curvature of the function [27], [28]. Compared to the trapezoidal 

rule, Simpson's method provides a better approximation of the area under the curve, especially when the 

curve is continuous and well-defined by the data points [29], [30]. The proposed method was imple-

mented using open-source libraries such as spectral, scipy, numpy, pandas, and matplotlib, utilizing the 

implementation of Simpson's method provided by the scipy library through the simpson(y, x) function. 

 

In this context, the proposed method offers a computationally efficient, low-cost, and easy-to-implement 

solution that does not require extensive training or large datasets. Unlike complex deep learning models 

that demand significant computational resources, this strategy provides a lightweight and effective al-

ternative, making it suitable for deployment in resource-limited environments. This feature is particu-

larly relevant for implementation in public health and environmental monitoring programs, where speed, 

simplicity, and reproducibility are essential. 

 

It is worth mentioning that, initially, the proposed method was evaluated using a sample of asbestos-

cement pixels and pixels from other materials, which were extracted from a reference hyperspectral 

image of the Manga neighborhood in the city of Cartagena. This evaluation allowed for the determina-

tion of the asbestos detection thresholds of the proposed method. Using these detection thresholds, the 

method was deployed on the full hyperspectral image, and its effectiveness in detecting asbestos was 

compared to the correlation method, which is one of the most widely used approaches for material de-

tection in hyperspectral images [31]. Similarly, the computational efficiency of the method was evalu-

ated in comparison to the correlation method by executing multiple repetitions of the method on a spe-

cific region of the reference image. The proposed method aims to serve as an alternative for integration 

into systems for monitoring and detecting materials using hyperspectral images. Furthermore, the pro-

posed method is highly relevant to public health due to the implications of asbestos in the development 

of respiratory diseases among individuals exposed to this material [32], [33], [34]. 

 

In addition to its technical contribution, the proposed method has significant implications for public 

health, as it enables non-invasive identification of roofs containing asbestos-cement. Since prolonged 

exposure to asbestos is linked to serious diseases such as asbestosis, mesothelioma, and lung cancer, the 

early and accurate detection of this material through hyperspectral imaging can support preventive in-

tervention programs, environmental monitoring, and remediation efforts in urban, rural, and industrial 

areas. This capability represents a major advancement for risk management systems in public health, 

especially in contexts where manual mapping is limited or unfeasible. 

 

In contrast to widely used correlation methods, which rely on linear similarity measures and can be 

sensitive to spectral noise, the proposed method introduces a numerical integration approach that con-

siders the full shape of the spectral curve, thereby improving material discrimination. Unlike deep learn-

ing approaches that require large volumes of labeled data and significant computational resources, the 

present method stands out for its low computational cost, ease of implementation, and adaptability to 
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various contexts. This combination of features represents a methodological innovation that has not been 

previously explored in asbestos-cement detection using hyperspectral images. 

 

The remainder of the article is organized as follows: Section 2 presents the methodological phases con-

sidered for the development of this research. Section 3 describes the results obtained in this study, which 

include, first, the evaluation of the method using a set of sample pixels of asbestos-cement and other 

materials to identify the detection thresholds. Additionally, this section details the deployment of the 

method on the full reference image to determine the percentage of asbestos detected using the method 

and to compare the results with those obtained through the correlation method. Similarly, the computa-

tional efficiency of the method is evaluated in comparison to the correlation method by analyzing the 

average processing time obtained in 200 executions of both methods on a specific region of the reference 

hyperspectral image. Finally, Section 4 presents the conclusions and future work derived from this re-

search. 

 

2. Methodology 

 

For the development of this research, five methodological phases were defined (see Figure 1): P1. Ac-

quisition of sample pixels of asbestos-cement and other materials, P2. Determination of the normalized 

characteristic pixel of asbestos-cement and its area under the curve, P3. Implementation of the method 

and identification of detection thresholds using pixels of asbestos and other materials, P4. Deployment 

of the method on the reference hyperspectral image, and P5. Evaluation of the method's effectiveness 

and efficiency compared to the correlation method. 
 

Figure 1. Methodology considered. Source: Own. 

 

 
 

In Phase 1 of the methodology, a total of 75 sample pixels of asbestos-cement and 75 pixels of other 

materials (such as vegetation, water, roads, among others) were selected from a reference hyperspectral 

image corresponding to the Manga neighborhood in the city of Cartagena. This image consists of 

725x850 pixels, each containing 380 reflectance bands. These sample pixels were obtained through vis-

ual inspection and are shown in Figure 2, which presents an RGB representation of the hyperspectral 

image, with asbestos pixels marked in blue and pixels of other materials marked in red. It is worth noting 

that these pixels will be used for training and evaluating the method, focusing on assessing the proposed 

method’s ability to differentiate asbestos-cement pixels. 
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Figure 2. Sample pixels of asbestos and other materials. Source: Own. 
 

 
 

In Phase 2, using the 75 selected asbestos-cement pixels, each with a depth of 380 bands, the character-

istic pixel of asbestos-cement was obtained. This pixel was calculated by taking the median of each 

reflectance band, leveraging the statistical operations provided by the NumPy and pandas libraries. Ac-

cordingly, Figure 3 shows the sample asbestos-cement pixels and the characteristic pixel obtained by 

calculating the median for each of the 380 bands. 

 

Figure 3. Determination of the characteristic pixel of asbestos-cement. Source: Own. 

 

 
 

Similarly, based on the characteristic pixel, the area under the curve of the characteristic spectral signa-

ture was calculated using Simpson's method. This was implemented through the Simpson (y, x) function 

provided by the SciPy library in Python. This spectral signature area was later used in subsequent phases 

to compare it with the areas of other pixels in the image and to identify the similarity between the curves. 

Simpson's method is a numerical integration technique used to determine the area under the curve of a 

continuous or discretized function. This approach is particularly advantageous in applications involving 

spectral data, as it delivers precise results even with a limited number of sampling points [35]. The 

general formula of Simpson's method for calculating the definite integral of a function over an interval 

is [36]: 

 

∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎
≈

ℎ

3
[𝑓(𝑥0) + 4 ∑ 𝑓(𝑥𝑖)

𝑛−1
𝑖=1,3,5,… + 2 ∑ 𝑓(𝑥𝑖)

𝑛−2
𝑖=2,4,6,… + 𝑓(𝑥𝑛)] (2) 

ℎ =
𝑏−𝑎

𝑛
 (3) 
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𝑥𝑖 = 𝑎 + 𝑖 ∙ ℎ     para i=0,1,2,…,n (4) 
 

In Equation (2), a and b represent the lower and upper limits of integration, respectively. n is the number 

of subintervals, which must be even to apply this method [2]. h is the length of each subinterval and is 

calculated using Equation (3). The sampling points x₀, x₁, ..., xₙ are uniformly distributed within the 

interval [a, b] (dividing the interval into n equal parts) and are calculated using Equation (4). f(x₀) and 

f(xₙ) are the function values at the endpoints of the interval. The summation ∑ 𝑓(𝑥𝑖)𝑛−1
𝑖=1,3,5,…  represents 

the terms weighted by 4, corresponding to the odd-indexed points, while ∑ 𝑓(𝑥𝑖)𝑛−2
𝑖=2,4,6,…  represents the 

terms weighted by 2, corresponding to the intermediate even-indexed points. In this manner, by utilizing 

Equations (2), (3), and (4) in hyperspectral images [37], the integration interval [a,b] represents the 

spectral range over which the analysis is conducted. In the context of hyperspectral images, this interval 

corresponds to the selected wavelengths [37]; n defines the total number of spectral sampling points. An 

even number ensures the correct application of the method. h is the spectral step, indicating the resolu-

tion between two consecutive bands in the spectral data. f(xᵢ) represents the spectral intensities or re-

flectance response at each wavelength xᵢ [36], and the weights (1, 4, 2) are weighting factors that assign 

greater importance to the intermediate (odd-indexed) points and lesser importance to the even-indexed 

intermediate points. This Simpson's method has been widely used in spectral data analysis due to its 

superior accuracy compared to other numerical methods, with errors on the order of 10⁻³ for smooth 

functions and uniformly sampled spectral data [36]. Additionally, its computational efficiency reduces 

the number of operations required for integration in large datasets. In the context of hyperspectral im-

ages, the integration of the spectral curve for each pixel enables precise comparison of spectral signa-

tures, allowing for the detection of specific materials such as asbestos-cement roofing [38]. 

In this context, during Phase 3 of the methodology, the proposed method was implemented and evaluated 

using the sample pixels of asbestos and other materials. For each pixel, the absolute value of the differ-

ence between areas was calculated, and the minimum and maximum differences with asbestos pixels 

and other material pixels were determined. The goal was to identify whether there was overlap between 

the maximum difference identified with asbestos pixels and the minimum difference with pixels of other 

materials. If overlap was found, band ranges without overlap were selected to identify the minimum and 

maximum detection thresholds for the method. 

 

In Phase 4 of the methodology, once the thresholds and the bands without overlap were identified, the 

implemented method was applied to all the pixels in the reference image to determine the percentage of 

asbestos pixels relative to the total image. To achieve this, a pixel-by-pixel iteration was performed, 

calculating the area under the curve for each pixel and obtaining the absolute value of the difference. 

Based on the thresholds identified in the previous phase, each pixel was classified as either asbestos or 

another material. If the pixel was classified as asbestos, it was marked in blue on a copy of the reference 

image. 

 

Finally, in Phase 5 of the methodology, the correlation method was implemented to determine the per-

centage of asbestos-cement and compare it with the percentage obtained using the proposed method, 

aiming to assess its effectiveness. Additionally, a total of 200 executions of both the correlation method 

and the proposed method were carried out on a 20x20-pixel section of the image with 380 reflectance 

bands, in order to calculate the average processing time for each method and evaluate the efficiency of 

the proposed method relative to the correlation method. 

 

3. Results y Discussion 

 

In terms of the results, the area under the curve of the characteristic pixel of asbestos-cement was first 

calculated to compare this area with the area under the curve of the sample pixels of asbestos and other 

materials. Using the implementation of Simpson's method provided by the SciPy library, the area under 

the curve was calculated to be 63.775, as shown in Figure 4.   
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Figure 4. Area under the curve of the asbestos spectral signature. Source: Own. 

 

 
 

Once the area under the curve of the characteristic pixel was identified for all bands, an iteration was 

performed for each asbestos-cement pixel and pixels of other materials. For each pixel, the area under 

the curve and the absolute value of the difference between areas were determined, obtaining the mini-

mum and maximum difference values in each case. Accordingly, Figure 5 presents a graph showing the 

minimum and maximum difference values obtained for the sample pixels of asbestos and other materi-

als. 

 

Figure 5. Evaluation of the method with asbestos and non-asbestos pixels. Source: Own. 

 

 
 

From Figure 5, it can be observed that when considering all 380 bands of the sample pixels of asbestos 

and other materials, there is an overlap between the absolute maximum difference with asbestos and the 

absolute minimum difference with non-asbestos pixels. As a result, if all bands are used in the imple-

mentation of the method, it will face difficulties in distinguishing some pixels and may confuse asbestos-

cement pixels with those of other materials. In this regard, the difference between the maximum thresh-

old with asbestos and the minimum threshold with non-asbestos pixels is -2.962. 

 

Accordingly, the range of bands where the difference between the two aforementioned thresholds was 

positive was identified, with the results presented in Table 1. 
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Table 1. Difference between thresholds by band range 

 
Reflectance band range Difference between thresholds 

0-380 -2.962 

0-350 -3.168 

0-300 -2.674 

0-200 -3.109 

200-300 -1.077 

200-250 -0.052 

50-200 -2.322 

50-160 0.328 

55-160 0.374 

55-157 0.491 

52-157 0.547 

50-157 0.576 

48-157 0.602 

46-157 0.572 

 

According to the results shown in Table 1, it can be observed that the range with the largest difference 

between thresholds (the absolute maximum difference with asbestos pixels and the absolute minimum 

difference with non-asbestos pixels) corresponds to the area between bands 48 and 157, with a difference 

of 0.602. Figure 6 presents the specific thresholds obtained for this range of bands. 

 

Figure 6. Evaluation of the method with asbestos and non-asbestos pixels in bands 48-157. Source: 

Own. 

 

 
 

In Figure 6, it can be observed that for the case of bands 48 to 157, the absolute minimum difference 

with non-asbestos pixels is greater than the absolute maximum difference with asbestos pixels, meaning 

there is no overlap. This range of bands provides the highest effectiveness of the method in distinguish-

ing asbestos pixels from pixels of other materials. Based on the thresholds identified in Figure 6, the 

method was then deployed across the entire reference image to determine the percentage of asbestos 

pixels present. Figure 7 shows both the deployment of the method over the entire image and the asbestos 

zones detected by the method, marked in blue. 
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Figure 7. Deployment of the method in the band range 48-157. Source: Own. 

 

 
 

As a result of applying the method to the band range from 48 to 157, it was found that the method 

detected 13.73% of asbestos pixels in the entire image. However, visual inspection of Figure 8 reveals 

that while some areas are correctly detected, certain vegetation pixels are mistakenly identified as as-

bestos pixels. To compare the effectiveness of the proposed method, the correlation method was applied 

to the complete image to determine the percentage of asbestos pixels, with the results presented in Figure 

8. 

 

Figure 8. Deployment of the correlation method on the reference image.Source: Own. 

 

 
 

From the implementation of the correlation method on the reference hyperspectral image, it was found 

that the percentage of detected asbestos pixels was 9.78%. This indicates that the proposed method de-

tected 3.95% more pixels than the correlation method, which is not a significant difference. However, it 

is observed that, unlike the proposed method, the correlation method provides a more accurate detection 

of asbestos without mistakenly identifying certain vegetation areas as asbestos pixels. To evaluate the 

computational efficiency of the proposed method compared to the correlation method, 200 executions 
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of both methods were performed on a 20x20 pixel region of the image with 380 bands, in order to 

determine the average processing time per execution for each method. Figure 9 presents the average 

processing times obtained for each method when processing the specified image region. 

 

Figure 9. Evaluation of the average processing time over 200 execution of the correlation method and 

the proposed method. Source: Own. 

 

 
According to the results presented in Figure 9, it can be concluded that the correlation method is 1.02 

times slower than the proposed method, meaning that the proposed method is 1.79% more efficient than 

the correlation method. Thus, the proposed method can be considered a viable alternative to the corre-

lation method, as it achieves a similar level of effectiveness while offering slightly better efficiency. This 

makes the method suitable for integration into material monitoring systems using hyperspectral images. 

 

As a discussion point, it is important to note that, compared to studies that have not utilized machine 

learning models for material detection, such as the correlation method [31], this research provides an 

alternative with comparable results in terms of effectiveness and improved results in terms of efficiency. 

However, it is crucial to highlight that the proposed method requires a preliminary process to identify 

the reflectance bands where the area under the curve is effective. As demonstrated in this study, when 

all 380 bands are used, the method encounters difficulties in distinguishing asbestos-cement pixels from 

those of other materials. 

 

Similarly, this research demonstrated how the use of open-source tools and technologies enables the 

implementation and customization of methods for material detection in spectral images. This approach 

allows for the development of flexible and adaptable solutions tailored to the specific needs of different 

studies, fostering innovation. This represents a significant contribution compared to remote sensing 

studies that rely on proprietary tools [39], [40], which face limitations such as difficulty in hybridizing 

methods and the high cost of licenses barriers that restrict access to these technologies for universities 

and research centers in developing countries. Furthermore, open-source solutions promote collaboration, 

transparency, and global accessibility in scientific research. In this way, this research aims to serve as a 

reference for replication and extrapolation in material detection by educational institutions, research 

centers, and companies, leveraging the economic and technical advantages of open-source technologies. 

 

The effectiveness and efficiency results obtained become particularly relevant when considered in real 

world application scenarios. For instance, the method's ability to detect a higher percentage of asbestos 

in the image 3.95% more than the correlation method enables better delineation of high risk areas in 

hazard maps. Similarly, the improvement in computational efficiency, though modest (1.79%), can lead 

to significant reductions in processing time when applied to large images or extensive datasets, which 

are common in urban or environmental monitoring systems. These features make the proposed method 
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especially valuable for government institutions, health agencies, and environmental organizations that 

require fast and accurate responses for informed decision-making. 

 

4. Conclusions and Future Work 

 

Considering the challenge of identifying and evaluating alternative methods for processing and analyz-

ing hyperspectral images, given the large volume of data associated with the different spectral bands of 

each pixel, this article proposed a new approach for asbestos-cement detection in hyperspectral images 

using Simpson's method for calculating the area under the curve. Based on the results obtained, it can 

be concluded that, compared to the correlation method, the proposed method is comparable in terms of 

effectiveness and slightly more efficient computationally. This method aims to be extrapolated and 

adapted to various studies focused on the detection of different materials in hyperspectral images. Fur-

thermore, due to its simplicity, the method can be easily integrated and hybridized into material moni-

toring systems that use hyperspectral images. 

 

When adapting and/or extrapolating this method for the detection of other materials, it is crucial to first 

identify the range of bands where no overlap is observed between the thresholds obtained from the 

sample pixels. For this reason, it is important to automate detection using methods and perform iterations 

across different ranges to more accurately identify the appropriate range. In this study, it was determined 

that when using all 380 default bands of the image, there was overlap between the absolute maximum 

difference with asbestos and the absolute minimum difference with other materials. Subsequently, after 

evaluating different band ranges, it was found that the range with no overlap and the greatest difference 

between thresholds was between bands 48 and 157. Using this band range, the proposed method detected 

13.73% asbestos in the reference image, differing by 3.95% compared to the correlation method. These 

results suggest that the proposed method can be considered a viable alternative for experimentation with 

hyperspectral images and its inclusion in material monitoring systems within the field of remote sensing. 

 

To evaluate the computational efficiency of the proposed method compared to the correlation method, 

200 executions of both methods were performed on a 20x20 pixel region of the image with 380 bands. 

The results showed that, on average, the correlation method is 1.02 times slower than the proposed 

method, meaning the proposed method is, on average, 1.79% more efficient than the correlation method. 

Although the differences may seem minimal, in the context of analyzing large volumes of images, such 

as in environmental monitoring with hyperspectral images, this method can be highly useful for obtain-

ing results in less time with an approximation that is close to that of the correlation method. However, 

as previously mentioned, the efficiency depends on the material being identified, in which case it is 

necessary to determine the range of bands where the method is most effective. 

 

This study demonstrated the effectiveness of using open-source libraries and technologies for the pre-

processing, processing, and analysis of hyperspectral images, showing that they are a viable alternative 

to conventional proprietary tools commonly used for hyperspectral image analysis. For instance, the 

spectral library was employed to access reflectance data from the various image bands in the form of 

NumPy arrays. The SciPy library was used to apply Simpson's method for calculating the area under the 

curve of the characteristic pixel and other pixels in the image. The NumPy library was utilized for man-

aging spectral band data, calculating the characteristic asbestos pixel, and implementing the correlation 

method. The pandas library was used to load the coordinates of sample pixels for asbestos and other 

materials from an Excel file. Additionally, the matplotlib library was employed to generate graphs asso-

ciated with the spectral signatures of asbestos and other materials. Through this research, the use of these 

libraries and technologies aims to be promoted in research centers and universities for experimenting 

with material detection methods in hyperspectral images. 

 

Finally, this work represents a significant contribution to public health by enabling the automated and 

noninvasive identification of asbestos-cement roofing. This capability is particularly valuable in urban 

and industrial contexts where asbestos exposure poses a latent risk to the population. The proposed 
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method can be integrated into territorial monitoring systems aimed at preventing asbestos related res-

piratory diseases and may serve as a foundation for the development of public policies focused on iden-

tification and remediation in contaminated environments. 

 

In summary, the developed method represents not only a novel computational alternative but also a 

valuable tool for public health. Its ability to detect asbestos accurately, efficiently, and without demand-

ing computational requirements positions it as a practical and scalable solution for real-world environ-

mental and epidemiological monitoring scenarios. 

 

As a future work derived from this research, it is intended to combine Simpson's area under the curve 

method with the wavelet transform, so that by obtaining the approximate component at different levels, 

it becomes possible to compare the area under the curve of the characteristic pixel with the area under 

the curve of the other pixels. Additionally, the method's effectiveness in detecting other materials in 

environmental contexts will be evaluated, such as identifying vegetation or bodies of water. 
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