
An analysis of user-interface creation complexity using a model-driven design approach

40

An analysis of user-interface creation complexity using
a model-driven design approach

Análisis de la complejidad de la creación de interfaces de usuario
utilizando un enfoque de diseño basado en modelos

Victor H. Mercado1, Yony F. Ceballos2, German Sanchez-Torres.3

1MS.C. en ingeniería de software, Profesor Auxiliar, Universidad de Antioquia, Grupo de Investigación Ingeniería y Tecnologías de las Organizaciones y
de la Sociedad, Medellín-Colombia

2Ph.D. en ingeniería, Profesor Asociado, Universidad de Antioquia, Grupo de Investigación, Ingeniería y Sociedad, Medellín-Colombia
3Ph.D. en ingeniería, Profesor Asociado, Universidad del Magdalena, Grupo de investigación en Sistemas y Computación

Email: yony.ceballos@udea.edu.co

Cite this article as: V. Mercado, Y. Ceballos, G. Sanchez-Torres “An analysis of user-interface creation complexity using a model-driven
design approach”, Prospectiva, Vol 17, N° 2, 40-46, 2019

Recibido: 09/07/2019 / Aceptado: 31/07/2019

http://dx.doi.org/10.15665/rp.v17i2.2078

ABSTRACT
Model-Driven Development (MDD) is a software development approach that facilitates problem comprehension. MDD
is carried out based on level of abstraction attained by working with models. When using models to create user-interfaces,
development time can be reduced significantly. However, automatic user-interface generation is done with preestablished
templates that might not fulfill all the requirements clients. These templates might also be too general and sometimes
provide few customization options. In this paper, we review research on the usage of MDD for user-interface development.
We also study how automatic user-interface generation can result in limitations as the need might arise for repeatedly
modifying model and code.

Keywords: Model-Driven Development; User-Interface Creation; Software Development; User-Interface Development:
Templates.

RESUMEN
El Desarrollo Dirigido por Modelos (o MDD, por sus siglas en inglés) es un enfoque de desarrollo de software que facilita
la comprensión de problemas. El MDD se lleva a cabo según el nivel de abstracción alcanzado al trabajar con modelos.
Cuando se usan modelos para crear interfaces de usuario, el tiempo empleado se puede reducir significativamente. Sin
embargo, la generación automática de la interfaz de usuario se realiza con plantillas preestablecidas que pueden no ajustarse
a todos los requisitos del cliente. Comúnmente, estas plantillas pueden ser demasiado generales y, en ocasiones, ofrecer
pocas opciones de personalización. En este documento, se revisa el uso de MDD para el desarrollo de la interfaz de usuario.
También se estudia cómo la generación automática de interfaz de usuario puede presentar limitaciones, ya que puede ser
necesario modificar el modelo y el código repetidamente.

Palabras clave: Desarrollo Dirigido por Modelo (MDD); Creación de interfaz de usuario; Desarrollo de software; Desa-
rrollo de interfaz de usuario: Plantillas.

PROSPECTIVA Vol. 17 - No. 2 / Julio - Diciembre de 2019 / 40 - 46

41

Internal organizational factors comprise considerations re-
lated to either adapting the MDD paradigm to the existing
organizational process or adapting the organizational process
to the said paradigm, while considering issues such as sustai-
nability, migration and integration issues, among others. Also
included in this category are factors such as organizational
culture and whether there are members in the organization
with the skills required for adopting this approach.

The impact of governmental standardization, commercial
strategies associated with tool adoption costs, and the rela-
tionship of said strategies with the business model of the or-
ganization all constitute factors external to the organizations.

Finally, the social perception of the community about the
quality of the generated code belongs to the social factors
category.

In order to carry out the literature review, we analyzed se-
veral perspectives on model transformation, and we deter-
mined that our main interest for this work was model-based
user interface generation.

The lack of flexibility of tools for model-based user interface
generation has been addressed in the literature [11], [12].
Main weaknesses of these models include the high degree of
similarity among automatically-generated interfaces and the
reduced amount of configuration options, which make it har-
der to fulfill all the project requirements properly.

In this paper, we analyze the strategies that have been pro-
posed to make model transformation tools more flexible, to
avoid similarity between automatically-generated user inter-
faces, and to better satisfy project requirements. Similarly, we
are also interested in describing strategies for guaranteeing
the traceability of manual changes made to the interfaces af-
ter they are generated with a given tool.

2. MATERIALS AND METHODS
Systematic literature reviews (SLRs) are often employed to

validate statements about the trends and behavior of a scien-
tific community. Through SLRs, researchers can aggregate
experiences resulting from various studies in order to answer
a specific research question [13]. Such reviews are based on
methodologies designed for determining the final set of work
which will be employed to carry out the corresponding study,
while guaranteeing objectivity and reproducibility.

Thus, SLRs identify, evaluate, and allow the synthesization
of all of the relevant work in order to assess a given research
area or scientific phenomenon [14], [15].

The general methodology used in this work is described on
the Figure 1.

1. INTRODUCTION
The main goal of software development companies is to

fulfill client expectations in less time. However, when it co-
mes to the life-cycle of a software project, expectations can
change based on factors such as the accomplishment of the
business idea, the reassessment of specific milestones, and
the lack of clarity in the scope of the objectives which are set
during the initial phase of the project [1]. It is also usual for
development teams to employ abstraction models in order to
better understand the problems at hand [2].

Model-Driven Development (MDD), also known as Mo-
del-Driven Software Development (MDSD), is a software
development approach for creating and transforming models
based on abstraction, automation, and standardization [3].
These models are turned into running applications through a
variety of tools [4]. The main advantages of this methodology
are better problem comprehension (thanks to the higher abs-
traction degree) and faster interface development. However,
when these models are transformed into running applica-
tions, the resulting interfaces often clash with the corporate
image of the client and might not satisfy all of the require-
ments due to the limitations of the model transformation tool
[5].

In order to solve these issues, it is necessary to carry out mo-
difications to the model by altering application code, which
implies a need for the developers to have specific knowledge
related to how to transform models [6]. In turn, these trans-
formations can be complicated to implement due to difficul-
ties related to properly understanding the code generated by
the model transformation tool. Furthermore, if the interface
is modified manually due to some client request, and it is ne-
cessary to generate the interface again, the manual changes
will be lost. For this reason, every change made to the original
model must be traceable [5].

Most of the work in the literature singles out limited sup-
port for existing tools as the main reason for the MDD ap-
proach not being widely adopted in the industry [7]–[9].
However, that is not the only influential factor. A taxonomy
of these factors is described in [10], including:

• Technical factors

• Internal organizational factors

• Factors external to the organizations

• Social factors

In general, technical factors include weaknesses in model
transformation tools, weaknesses in the support for domain-
specific languages, limitations in code generation, limitations
in tool applicability, limitations in complexity, and user-rela-
ted considerations such as usability and abstraction levels.

An analysis of user-interface creation complexity using a model-driven design approach

42

A. Research questions
Research questions guide the literature review as they pro-

vide basic criteria for selecting the main studies and define
the relevant pieces of information which are to be extrac-
ted, as well as how to synthesize them in order to answer
the questions [16]. In this work, we analyzed the following
research questions:

• How can we make the transformation model more flexi-
ble in order to prevent the automatically-generated inter-
faces from being too similar to each other, while fulfilling
all project requirements?

• How can we track manual changes made to the models,
with the purpose of fulfilling client needs?

B. Exclusion criteria
Exclusion criteria are intended to guarantee that non-rele-

vant work is excluded from the study. For this reason, we
adopted the following exclusion criteria:

• EC1: Duplicated or similar work among the platforms.

• EC2: Full-text unavailable.

• EC3: The documents are not related to architecture-
based tests.

• EC4: The work does not explicitly discuss the MDD or
MDSD approaches.

• EC5: Experiences or polls are reported.

• EC6: No work is carried out on user-interface design.

C. Quality criteria
The quality of the papers can be evaluated based on the

following criteria:

• QC1: The reported solutions for addressing the issue
are built coherently, on solid knowledge bases.

• QC2: The examples used to describe the issue are clear
and appropriate.

• QC3: The reported solution can be applied regardless
of the technological platform where it is implemented.

• EC4: The problem that leads to the need for developing
user-interfaces through model-based automatic code ge-
neration is properly described.

• EC5: The reported solution has been tested and veri-
fied, excluding papers with partial results.

The scale employed to evaluate the papers is described in
Table 1.

3. RESULTS

A. Database query
We queried several scientific databases to obtain the acade-

mic work reported in each of them. Specifically, we performed
queries on Scopus, Web of Science – WoS, and GoogleScholar.

The search equation includes the terms “model-driven de-
velopment” and “model-driven software development”, as
follows:

• Theme: (Model-driven development OR model-driven
software development)

• Indexes: SCI-EXPANDED, SSCI, A&HCI, ESCI

• Time range: Every year.

The results, sorted by year for every database, are shown in

Figure 2.

The results show that in the last two decades, academic
interest for research on MDD and MDSD reached its peak
towards the end of the 2000-2010 decade (see Figure 2).
In the Scopus database, most of the work is comprised of
conference proceedings, with 68.8%, while journal articles
represent 22.9% of the reported work (see Figure 3).

By unifying the results, we produce a first set of work rela-
ted to our research questions.

Figure 1. Methodology used for literature review.

 Description Value

	 The	criterion	is	completely	fulfilled	 3

	 The	criterion	is	partially	fulfilled	 2

	 The	criterion	is	not	fulfilled	 1

Table	1.	Evaluation	scale	for	criteria	fulfillment

PROSPECTIVA Vol. 17 - No. 2 / Julio - Diciembre de 2019 / 40 - 46

43

B. Initial filtering

We removed duplicated documents by verifying the titles
and authors of every paper obtained from the databases. De-
duplication resulted in a set 850 unique papers, and in this
phase, we applied exclusion criteria on the set of documents
obtained from the databases. The first filter was to search
for documents whose title and abstract addressed the issues
we detected regarding model transformation in MDD and
MDSD. Next, we formulated the research question, which
helped us further reduce the amount of documents, since
it is a very specific problem which has not been addressed
by many authors. The selected articles were those whose
main idea was to generate user-interfaces through MDD and
MDSD.

Also selected were those that highlighted the importance of
tracing changes made to models. In both cases, we prioritized
articles in which the authors also proposed concrete solutions
to the issues they highlighted. We excluded papers that ad-
dressed user-interface creation superficially, or that did not
address it from the perspective proposed in the research ques-
tion. We also excluded work in which the issue was left as an
open question and no specific solution was proposed.

C. Individual reading

We obtained a final set of 6 documents related to the pro-
blem of MDD and MDSD-based user-interface construc-
tion. We did a full revision of each of the six documents
which fulfilled exclusion criteria. The final set is reported in
Table 2.

D. Final set analysis

The results of applying quality criteria are reported in Table 3.

Aquino [11] proposes the generation of user-interfaces ba-
sed on templates, thus offering alternatives for solving the is-
sue of similarity between automatically-generated interfaces
and providing the option to add different functionalities to

each interface. For this purpose, Aquino introduces the con-
cept of transformation profile. A transformation profile has
two components. The first is the transformation template,
a set of parameters in which the graphical and stylistic ele-
ments of the interface are established. The second compo-
nent is the correspondence model, which comprises the rela-
tionship between models, from the base model to the target
model, which includes the customized elements employed to
add functionality to the interfaces.

Figure	2.	Work	reported	by	year	for	MDD	and	MDSD	in	the	Scopus,	WoS,	and	GoogleScholar	scientific	databases.

Figure	3.	Distribution	by	type-of-product	of	the	reported	works	using	the	
terms	MDD	–	model-drive	development	and	MDSD	-	Model-Driven	Software	

Development.

Table	2.	Information	related	to	the	final	set	of	works

 ID Title Type Source

[11]	 Adding	Flexibility	in	the	Model-Driven	 Conference	 ACM
	 	 Engineering	of	User	Interfaces

[12]	 Feature-Oriented	refinement	of	Models,	 Conference	 ACM
 Metamodels and Model Transformations

[17]	 Maintaining	Invariant	Traceability	 Conference	 ACM
 through Bidirectional Transformations

[18]	 Model-Driven	Engineering	of	User	Interfaces:	 Article	 ACM
	 	 Promises,	Successes,	Failures,	and	Challenges

[19]	 Diseño	de	reglas	de	adaptación	y	 Article	 Redalyc
	 	 transformación	para	interfaces	de	usuario

[5]	 Generative	Pattern-Based	Design	of	User	Interfaces	 Article	 ACM

An analysis of user-interface creation complexity using a model-driven design approach

44

Trujillo et al. [12] note that, in order to properly track modi-
fications in model transformations, it is necessary to account
for three basic concepts: models, metamodels, and model
transformations. Models are the representation of the pro-
blem which is to be solved. Metamodels are descriptions of
the features of the model. Model transformations are proces-
ses whose input is a model and whose output is the model
with the required modifications for customizing the solution
and its functionality. One of the proposed tools for model
transformation is MOFScript (which can be downloaded as
an Eclipse ® plugin) [20]. Transformations carried out using
such tools are based on rules. The term model refinement
is also included, which allows for a model to be extended
by adding elements, in order to facilitate customization for
different purposes. This feature allows base models to be
constructed, which are generalizations that possess common
elements and can be used later for obtaining modified/expan-
ded models.

Yu et al. [17] address the issue of how to modify a model
so that it is adjusted to specific needs. However, the authors
center on the importance of having traceability every time
such modifications are made. The developers can make
such changes in parallel both for the code and for the mo-
del. In order to guarantee traceability in the changes, every
time that a change is made in code, it should be made in the
model too. Likewise, when changes are made in the model,
such changes should also be observed in the code. These
transformations are deemed bidirectional transformations.
However, it is possible that there is not 100% correspon-
dence between the changes made to the model or the
code. The authors also show the consequences of having
no correspondence between the generated templates and
the modifications carried out by the user. In response, a
two-layer-framework is proposed, which combines changes
through bidirectional transformation. The first layer, called
model–code, synchronizes structural changes between the
model and the template using EMF (Eclipse Modeling Fra-
mework) [21], while the second layer, code – code, syn-
chronizes functionality changes between the code of the
template and the code of the model. The framework raises

warnings when there are significant differences between
code and model. The first step for creating said models
is automatic code generation. The developer then modi-
fies the code in order to customize and add the required
functionalities. Such changes modify the model, so the ori-
ginal template must be re-generated.

Vanderdonckt [18] focuses on MDD-based user-interface
generation and how such interfaces can be adapted to the
changes when the user requires it. This paper describes
MDD concepts in a concise way. It also describes the di-
fferent levels which compose MDD. The first level is the
task and domain of the model, in which the final user task is
specified, setting the basis for the model. The second level is
the abstract user-interface, in which the interfaces are main-
tained independent of the employed technological platform.
In the third level, we can find the concrete user-interfaces, in
which the technological platform is already defined. Lastly,
there is the final user-interface, in which the interface is pro-
duced based on the previous levels. Furthermore, the con-
cept of the model is defined, which is different than the way
it is done in ID2, as the author focuses on the different kinds
of models that can be used for developing an interface.

López-Jaquero and Montero [19] propose a different ap-
proach regarding the role MDD can play in interface design.
This is because, in addition to the previously mentioned is-
sues, they note that interfaces are sometimes made for users
with limited technical skills, resulting in a need for them to
be intuitive. There is, too, another factor: the variety of devi-
ces used to access software applications (tablets, smartpho-
nes, etc). When working with such models, it is necessary
to begin with an abstract model; however, as development
advances, said model is subject to several transformations,
turning it into a concrete model and then into the final ver-
sion. The transformations that the abstract model is subject
to must follow a set of rules, so López-Jaquero and Mon-
tero define the concept of “adaptation rules”. These rules
are comprised of a context in which they are valid, the data
which will be processed by the rules, and the transforma-
tion resulting from applying the rules. Finally, the authors
introduce T:XML as a rule which allows the specification of
adaptation rules.

Vanderdonckt and Simarro [5] present a new method for
user-interface development based on generative patterns.
This method is comprised of 4 axes that are based on pattern
administration and the use of a design pattern called Markup
Language (PLML), which was born in the CHI’2003 [22].
This pattern came up from the analysis carried out on existing
interface patterns. The authors attempt to solve the problems
that these patterns encountered when carrying out model
transformation, such as interface ambiguity and incoheren-

Table	3.	Quality	criteria	for	papers	in	the	final	set

 Quality Criteria

 QC1 QC2 QC3 QC4 QC5

		 [11]	 3	 3	 3	 3	 2

		 [12]	 3	 3	 3	 2	 2

		 [17]	 3	 3	 1	 2	 3

		 [18]	 3	 3	 3	 3	 3

		 [19]	 3	 2	 3	 3	 3

		 [5]	 3	 2	 1	 2	 3

Lit
er

at
ur

e

PROSPECTIVA Vol. 17 - No. 2 / Julio - Diciembre de 2019 / 40 - 46

45

ce. Aware of these issues, the authors propose a novel pattern
in which these problems are reduced by establishing rules
for the usage of the new pattern. An important axis which
makes up this method is an application called IDEALXML,
a software developed in Java for supporting pattern usage.

4. DISCUSSION
It is essential to model software systems when attempting

to create software platforms for complex systems. Doing so
allows the analyst to properly capture the most relevant as-
pects of the system and to take them to the required level of
abstraction.

MDD attempts to improve productivity using automation of
repetitive tasks. For this reason, Aquino [11] presented tools
which allowed developers to quickly generate user-interface.
However, those interfaces might end up looking too similar
or may not completely satisfy Project needs, so Aquino intro-
duced the transformation profile concept, but the develop-
ment of the model gets too technical and the conceptual part
is relegated excessively. In the end, Aquino declares the main
feature of his method to be the use of templates in order to
separate some special features and perform transformations.
This, according to the author, constitutes an advantage when
compared to other studies on MDD.

In the work of Trujillo et al. [12], the content is focused on
the importance of tracking changes made on the model, whi-
le the issue of generating interfaces is not addressed. Despite
this, we consider the article to be relevant, as it can be pre-
sented as a complement to the other papers we selected, due
to the fact that in only a few of them the authors specify what
happens when it is necessary to step back from a previous
model. It is a concise proposal which involves the reader
through an example that evolves with the development of the
idea in order to introduce all the relevant concepts.

Yu et al. [17] highlight the importance of parallelly modi-
fying both the automatically-generated code and the corres-
ponding models. This is done to make interfaces more flexi-
ble and to facilitate any required customization. The authors
focus on how, when building some features, it may be neces-
sary to backtrack into a previous version of the model. For
this reason, it is necessary to trace changes, because templa-
tes and code can diverge too much from the original model.
In contrast with [12], the authors point out that the need for
tracing changes arises from the parallel modifications made
to both the code and the model. This kind of change can
have serious consequences if the designed interface is too
complex, which can lead to questioning its utility, because in
other proposals it is not necessary to modify the code in such
a direct and specific way.

In the work of Vanderdonckt [18], the proposed approach
can seem general at first as the author introduces many con-
cepts and explains them in a simple manner. There is no fo-
cus on a single tool or method. However, the author presents
a wide array of options which he does not delve into, instead
showing only the most basic elements. We also observe some
elements mentioned in the other articles reviewed in this
document, such as baselines, assignation rules, etc., which
allow readers to get familiar with the terminology and to do
comparisons in this area. For this reason, we deem this paper
to be the complete one and the most appropriate for inexpe-
rienced readers who wish to know about the issue without
delving too deep into the literature.

After reviewing the final set of papers, we establish that
each of the proposals is a contribution to some specific fea-
tures, while ignoring others which might also be significant.
For this reason, we raise a key question: what is the level
of maturity of MDD-based automatic user-interface genera-
tion? In the literature, authors reiterate that it is important
to employ MDD, and they highlight the associated risks or
difficulties. However, they provide no definitive solution.
The central theme described in [19] by López-Jaquero and
Montero is an ideal complement to [11], [12], and [17], as
it centers around the design of adaptation rules. The more
general approach to this theme is reutilization, which is one
of the most valuable features as it centers directly around
improving quality.

Finally, in the work of Vanderdonckt and Simarro [5], a
pattern-based methodology is proposed for carrying out in-
terface transformation. This is done by using an application
consisting of a sizable amount of code, which corresponds
to the patterns stored in it. We consider this work to be very
complete, as the authors specify all the components emplo-
yed for building the application.

5. CONCLUSIONS
Systems modeling is a powerful tool for the comprehension

and design of solutions for a given problem. The usefulness
of this tool lies in its capacity to manage complex systems by
decomposing them into smaller, easier to tackle subsystems.
Being able to obtain user-interfaces directly from such mo-
dels not only implies increased productivity, but increased
software product quality, as the model should cover all the
requirements of the client.

Model-based automatic code generation is a quick way to
obtain user-interfaces. There are many advantages to this
approach, such as the inclusion of elements within model
generation templates and the automation of repetitive tasks.
However, as shown in this review, it is very hard to fully remo-
ve human intervention from the development process.

An analysis of user-interface creation complexity using a model-driven design approach

46

During the lifecycle of a software project, the need to make
new changes will arise constantly in order to fulfill client
needs. In many cases, such changes must be reversible, be-
cause the specific need of the client might also change, the
proposed solution is not viable, etc. In any case, it is essential
to be able to reverse changes, thus making it necessary for all
changes made during development to be traceable.

There remain many challenges to fully automated model-
-based user interface generation. However, the proposed
solutions (some of them already functional, others still in
development) are relevant. The MDD concept is very attrac-
tive thanks to the advantages it provides. By solving these
challenges, projects might be developed much faster without
a loss of quality.

Finally, we can say that there are many proposed solutions
for the problems that arise from model transformations, but
there is no standard which solves such problems in a plat-
form-independent way. From analyzing the selected papers,
we saw that the authors propose different solutions, but none
of them is definitive. It is up to developers to decide which
solution is better adapted for their specific development en-
vironment and requirements. For this reason, it is always ne-
cessary to analyze the available options, and sometimes the
best solution might be a combination of several such propo-
sals.

6. REFERENCES
[1] D. Carrizo and J. Rojas, “Metodologías , técnicas y herramientas en

ingeniería de requisitos : un mapeo sistemático Methodologies , tech-
niques and tools in requirements,” vol. 26, pp. 473–485, 2018.

[2] S. P. Jácome-guerrero and E. Salazar-jácome, “Software development
environments and tools in MDE,” pp. 1–15, 2018.

[3] J. Quintero, “Marco de Referencia para la Evaluación de Herramien-
tas Basadas en MDA,” in Memorias del X Workshop IDEAS, 2007, no.
c, pp. 1–14.

[4] J. Gamalielsson, B. Lundell, and A. Mattsson, “Open Source Software
for Model Driven Development: A Case Study,” Open Source Syst.
Grounding …, no. Ebert 2008, pp. 348–367, 2011.

[5] J. Vanderdonckt and F. M. Simarro, “Generative pattern-based design
of user interfaces,” Proc. 1st Int. Work. Pattern-Driven Eng. Interact.
Comput. Syst. - PEICS ’10, pp. 12–19, 2010.

[6] J. S. Cuadrado and J. De Lara, “AnATLyzer : An Advanced IDE for
ATL Model Transformations,” pp. 16–19.

[7] G. Hinkel, T. Goldschmidt, E. Burger, and R. Reussner, “Using in-
ternal domain-specific languages to inherit tool support and modula-
rity for model transformations,” Softw. Syst. Model., vol. 18, no. 1, pp.
129–155, Feb. 2019.

[8] P. Mohagheghi, M. A. Fernandez, J. A. Martell, M. Fritzsche, and W.
Gilani, “MDE Adoption in Industry: Challenges and Success Crite-
ria,” in Models in Software Engineering, 2009, pp. 54–59.

[9] M. Staron, “Adopting Model Driven Software Development in Indus-
try – A Case Study at Two Companies,” in Model Driven Engineering
Languages and Systems, 2006, pp. 57–72.

[10] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Hel-
dal, “Industrial Adoption of Model-Driven Engineering: Are the Tools
Really the Problem?,” in Model-Driven Engineering Languages and
Systems, 2013, pp. 1–17.

[11] N. Aquino, “Adding flexibility in the model-driven engineering of user
interfaces,” in Proceedings of the 1st ACM SIGCHI symposium on En-
gineering interactive computing systems - EICS ’09, 2009, p. 329.

[12] S. Trujillo et al., “Feature-oriented refinement of models, metamo-
dels and model transformations,” ACM Int. Conf. Proceeding Ser., pp.
87–94, 2009.

[13] D. Budgen and P. Brereton, “Performing systematic literature reviews
in software engineering,” 2006, pp. 1051–1052.

[14] “Systematic reviews and meta-analytic techniques - ScienceDirect.” .

[15] L. Askie and M. Offringa, “Systematic reviews and meta-analysis,”
Semin. Fetal Neonatal Med., vol. 20, no. 6, pp. 403–409, Dec. 2015.

[16] B. Uzun and B. Tekinerdogan, “Model-driven architecture based tes-
ting: A systematic literature review,” Inf. Softw. Technol., vol. 102, pp.
30–48, Oct. 2018.

[17] Y. Yu, Y. Lin, Z. Hu, S. Hidaka, H. Kato, and L. Montrieux, “Maintai-
ning invariant traceability through bidirectional transformations,” in
Proceedings - International Conference on Software Engineering, 2012,
pp. 540–550.

[18] J. Vanderdonckt, “Model-Driven Engineering of User Interfaces :
Promises , Successes , Failures , and Challenges,” in Proceedings of
the National Conference on Human-Computer Interaction, 2008, pp.
1–10.

[19] V. López-Jaquero and F. Montero, “Diseño de reglas de adaptación y
transformación para interfaces de usuario.,” RASI, vol. 7, no. 1, pp.
53–58, 2010.

[20] C. Blanco, I. G. R. de Guzmán, E. Fernández-Medina, and J. Trujillo,
“An MDA approach for developing secure OLAP applications: Meta-
models and transformations,” Comput. Sci. Inf. Syst., vol. 12, no. 2,
pp. 541–565, 2015.

[21] A. Rodrigues Da Silva, “Model-driven engineering: A survey suppor-
ted by the unified conceptual model,” Comput. Lang. Syst. Struct., vol.
43, pp. 139–155, 2015.

[22] S. Fincher et al., “Perspectives on HCI patterns,” in CHI ’03 extended
abstracts on Human factors in computing systems - CHI ’03, 2003, p.
1044.

