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ABSTRACT
In brain magnetic resonance images (brain MRI) analysis, for diagnosing certain brain conditions, it is necessary to quantify 
the brain tissue, which implies to separate the brain from extracranial or non-brain tissues through a process of isolation 
known as skull stripping. This is a non-trivial task since different types of tissues may have the same gray level, and during 
the separation process, some brain tissues could be removed. This paper presents a new solution approach for the skull 
stripping problem, based on saliency detection using dictionary learning and sparse coding, which can operate over T1 and 
T2 weighted axial brain MRI. Our method first subdivides the axial MRI into full overlapped patches and runs a dictionary 
learning over them for obtaining its sparse representation. Then, by analyzing the sparse coding matrix, we compute how 
many patches a dictionary atom affects to classify them as frequent or rare. Then, we calculate the saliency map of the axial 
MRI according to the composition of the image patches, i.e. an image patch is considered salient if it is mainly composed 
of frequent atoms, an atom is frequent whether it affects many patches. The non-salient pixels, corresponding to non-brain 
tissues, are eliminated from the MRI. Numerical results validate our method.

Keywords: Skull stripping, MRI, Saliency detection, Dictionary learning, Sparse coding. 

RESUMEN
En el análisis de Imágenes de Resonancia Magnética cerebral (IRM cerebral), para diagnosticar ciertas afecciones cerebrales, 
es necesario cuantificar solo el tejido cerebral, por lo que éste se debe aislar del tejido no cerebral. Esta es una tarea no trivial 
que involucra la separación de diferentes tipos de tejidos que pueden tener el mismo nivel de gris. Este artículo presenta un 
nuevo enfoque para solucionar el problema de la extracción del cráneo, basado en la detección de prominencias mediante 
el aprendizaje de diccionarios y codificación dispersa, que puede operar en IRM axiales potenciadas en T1 y T2. Nuestro 
método subdivide la IRM axial en parches superpuestos y ejecuta aprendizaje de diccionario para obtener su representación 
dispersa. Luego, analizamos la matriz de codificación dispersa y calculamos cuántos parches de imagen afecta un átomo del 
diccionario, para clasificarlo como frecuente o raro. Luego, calculamos el mapa de prominencia de la IRM axial según la 
composición de los parches de la imagen. Un parche de imagen se considera prominente si está compuesto principalmente 
de átomos frecuentes, un átomo es frecuente si afecta muchos parches. Los píxeles no prominentes, correspondientes a los 
tejidos no cerebrales, se eliminan de la IRM. Resultados numéricos validan nuestro método.

Palabras Claves: IRM, Extracción del cráneo, Detección de prominencias, Aprendizaje de diccionarios, Codificación 
dispersa. 
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1. INTRODUCTION
One of the most important techniques that can provide 

images about the interior of the human body is the Magnetic 
Resonance Imaging (MRI). This is a non-invasive radiologi-
cal technique, which allows obtaining internal information 
from the human body through detailed and high contrast 
images for diagnostic purposes in the medical field. MRI ba-
ses its operation on the phenomenon of magnetic resonance, 
avoiding the use of ionizing radiation, as in the case of Com-
puterized Tomography (CT).

Radiologists can make qualitative analyzes of an MRI; howe-
ver, this can be subjective, since it depends on the knowledge 
and experience the radiologist has. In cases where quantitati-
ve analysis is required, automatic segmentation is necessary. 
The quantitative analysis, like morphometric analysis, helps 
in the diagnosis of different pathologies and the evaluation of 
the response to a given treatment. However, the automatic 
segmentation of the tissues present in an MRI is not a trivial 
task, since it must be considered that, for example, different 
types of tissues can have similar gray levels, there are no ab-
solute values in the units of intensity, the inhomogeneity and 
the inherent noise associated with an MRI [1].

Quantitative morphometric studies based on brain MRI, 
normally require separating the brain from extracranial or 
non-brain tissues through a process of isolation known as 
skull stripping [2]. Studies in discovery biomarkers for de-
mentias like Alzheimer’s Disease [3], [4] and Schizophrenia 
[5] [6], early detection of Huntington’s Disease [7], [8], and 
tissue classification [9], among many others, process skull 
stripped brain MRI Skull stripping of brain MRI is a cha-
llenging task that continue being an active research problem, 
which has different solution approaches [10] [11] [12] [13] 
[14], all of them have their advantages and disadvantages. 
In this paper, we present a simple solution from a new ap-
proach based on saliency detection using dictionary learning 
and sparse coding, which operates indistinctly over T1 and 
T2 weighted axial brain MRI.

Our method first runs dictionary learning over the MRI 
patches for obtaining its sparse representation. Then, by 
analyzing the sparse coding matrix, we compute the frequen-
cy of appearance of the atoms in the image patches. Then, 
we calculate the saliency map of the MRI according to the 
composition of the image patches, i.e. an image patch is con-
sidered salient if it is mainly composed of frequent atoms, an 
atom rare whether it affects few patches. The salient pixels 
that correspond to non-brain tissues are eliminated from the 
MRI.

This paper is organized as follows. Section 2 presents re-
lated work. Sections 3 and 4 present the fundamentals of 

Visual saliency and Dictionary Learning and Sparse Coding, 
respectively. Section 5 presents the proposed method for 
skull stripping on brain MRI. Section 6 presents the results 
and discussion. Finally, in Section 7 the conclusions of this 
work are presented.

2. RELATED WORK
The goal of skull stripping is to isolate the brain from extra-

cranial or non-brain tissues, which is a challenging task that 
has received several solution approaches. Since the morpho-
logical approach proposed by Brummer et. al. [15] in 1993, 
many others have been proposed. More recently, in 2015, 
Roy and Maji [16] presented a hybrid approach based on pix-
el intensity and morphological operations for skull stripping 
on T1 weighted MRI. The method consists of a sequence of 
steps that apply typical spatial techniques of digital image 
processing, like median filter and thresholding, in addition 
to morphological operations such as opening and closing. In 
this approach, parameters like thresholds and structuring 
elements of the morphological filters, require previous sta-
tistical studies to estimate the suitable values for such pa-
rameters since, like was mentioned before, different types 
of tissues may have the same intensity levels, there are no 
absolute values in the units of intensity, the inhomogeneity 
and the inherent noise associated with the MRI [1], factors 
that may vary from one MRI to another one.

A different approach for skull stripping from deep learning 
was proposed in 2016 by Kleesiek et. al. [17], which can op-
erate over non-enhanced and contrast-enhanced T1, T2 and 
FLAIR MRI. They proposed a 3D convolutional deep learn-
ing architecture for processing the MRI. The proposed con-
sist of a convolutional neural network of seven hidden layers 
and one output-layer, where each layer implements a spatial 
3D convolution filter that performs a point-wise non-linear 
transformation. Each layer represents a specific number of 
filters with a fixed size pre-established. The neural network 
can deal with image artifacts like tumors. 

This method reports good results, even outperform some 
state-of-the-art methods, for certain public data sets. How-
ever, it is necessary to select a training set representative of 
the global data to achieve good training of the network for ob-
taining such good results. The training process takes around 
fifteen hours and it is necessary to run it every time the data 
set is changed since this is a supervised process.

An approach from fuzzy logic was proposed by Roy and Maji 
in 2018 [10]. Based on the rough-fuzzy connectedness of a 
voxel, term that refers to the degree of membership of the 
voxel respect to the brain region as long with the degree of 
adjacency to it, this method can discern whether a given vox-
el belongs to brain tissue even between two different types of 
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regions where the boundary is affected by the blurring effect. 
The method can deal with both healthy and diseased brain 
MR images. Due to the dependency of the rough-fuzzy con-
nectedness of a voxel on the gray level, this method only can 
deal with T1 weighted brain MR.

We present a novel approach, simple and robust, from vi-
sual saliency, using dictionary learning and sparse coding, 
which is independent of the contrast, which does not require 
previous training either the manual configuration of param-
eters, since it is automatically adjusted according to the con-
ditions of the image. Besides, our method can deal with both 
T1 and T2 weighted brain MRI.

3. VISUAL SALIENCY
The human brain and the human vision system, in front 

of a given scene, focus on regions with more information. 
Many studies in the field of psychology, neuropsychology and 
cognitive neurosciences, have detailed how the extraction of 
such information is carried out, even proposing models of the 
functioning of visual attention. From these models, comput-
er scientists have proposed computational variants [18] [19] 
[20] [21], which imitate human visual attention. This field of 
research is known as saliency detection on images.

Detection of saliency is a key component that is used as an 
input to solve much more complex problems such as image 
segmentation, object extraction from the background, and 
compression of images, among others [19]. In this work, vi-
sual saliency is used for detecting brain tissue.

There exist two main classification models about how the 
brain computes visual saliency [22]. The Top-Down mod-
el, based on supervised learning, reaches high performance 
especially when deep learning techniques are used. The 
Bottom-Up model, the most used in solution approaches in 
computer sciences [23], suggests that the brain focuses on 
low-level vision features [22] like rare patterns, among oth-
ers. From this, it can be inferred that the term “focuses”, re-
fers to the differentiation between rare patterns and common 
patterns, which is equivalent to a classification. Then, it is 
possible to classify image regions by detecting rare or com-
mon patterns on them. Our method for skull stripping on 
brain MRI is based on the Bottom-Up, because it is support-
ed on identifying rare patterns, or regions with a high level 
of irregularity (regions with more information) for detecting 
salient regions.

The regions with more information (salient regions) of an 
axial brain MRI are related to patterns where sinuous brain 
structures are present. Figure 1a shows an image where the 
common pattern is the black background, and the rare pat-
tern is the small brain in the center. 

In Figure 1a, the attention is focused on the small brain 
in the center of the image, due to the rarity of this region 
respect to the rest of the image, therefore this is a salient 
region. However, if zoom in of such a region is made, the 
rare patterns change, and also the salient regions. Figures 1c 
and 1d show this new situation. Now, in Figure 1c, the more 
irregular region (rare patterns) is the brain tissue (highlighted 
region in figure 1d); however, some cranial and fatty tissues, 
(outer rings), are also salient in a lesser extent, therefore 
would be necessary to increase the saliency of the inner re-
gions and decrease the saliency of outer ones, in order to 
heighten the difference between the saliency level of these 
types of tissue. Based on this, our method will detect non-
brain tissue to carry out the skull stripping process. The rare 
patterns will be detected using the sparse representation of 
the image regions. This will be addressed in section 5.

4. DICTIONARY LEARNING
AND SPARSE CODING

Sparse representations in neuroimaging are useful for a 
better understanding of the brain functioning, besides just 
learning predictive models of mental states from imaging 
data [24]. It has been used in conjunction with SVM for the 
classification of Alzheimer’s disease [25], and jointed with 
Dimensionality Reduction [5] for estimating Schizophrenia 
biomarkers from fMRI. In both cases, the accuracy of the 
classification of cases and controls was improved. 

Dictionary Learning is a form of sparse representations 
which is aimed to find, from a set Y of data, also called sig-
nals, a dictionary D so that Y can be sparsely approximated 
from D, i.e. Y ≈ Dα. Where α is a sparse matrix known as 
the sparse coding matrix or the sparse representation of Y. 
On the other hand, the purpose of sparse coding is to appro-
ximate a set of feature input vectors as a linear combination 

Figure 1. Salient region due to rare patterns
Figura 1. Región prominente debido a patrones extraños
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of basis vectors, called atoms, which are selected from the 
dictionary learned from the data themselves.

In a formal way, let Y be a set of p n-dimensional signals  
Y={y1,y2,…,yp}, the dictionary learning and the sparse co-
ding aims to find a dictionary D = {d1,d2,…,dN}  and a sparse 
matrix α such that Y can be approximated by a linear combi-
nation of the basis vectors di (atoms). This is, Y ≈ Dα, where 
most of the coefficients αi,j are zeros or close to zero [26]. We 
have that, the dictionary learning and the sparse coding pro-
blem can typically be formulated as an optimization problem, 

how indicates Equation 1.

The KSVD algorithm proposed in [27] allows obtaining the 
optimal values of D and α in Equation 1. By analyzing the 
sparse representation of the set of signals in Y, it can be de-
tected some features about them. e.g. it is possible to know 
if a given signal represents or belongs to a rare pattern on an 
image and therefore to know whether a region is salient or 
not. This will be addressed in the next section.

5. PROPOSED METHOD
Our solution approach for the problem of skull stripping on 

brain MRI consists of three steps. However, an initial prepro-
cessing is carried out for obtaining the more suitable starting 
point. These stages are presented below.

5.1 Preprocessing stage 
Depending on the depth of the slice, an axial brain MRI 

may present different patterns, i.e. in a slice near the top of 
the volume, common patterns could be empty, flatten or ho-
mogeneous regions, like shows Figure 2a. There may be no 
brain tissue in these slices. In a middle slice, the sinuous bra-
in structures are the common pattern, like shows Figure 2b. 
In a deeper slice, the patterns are more varied (see Figure 2c) 
as a result, the salient regions could correspond to non-brain 
tissue, and no be segmented. Therefore, the starting point of 
our method is a middle slice.

Before processing the slice looking for salient regions, it is 
necessary to crop the image to highlight the salient regions, 
like it is illustrated in Figure 2d. This is because without 
cropping the image, the rare pattern could be the whole brain 
including the skull, which would make salient non-brain tis-
sues that we want to remove like was shown in Section 4 (see 
Figure 1a and Figure 1b). 

5.2 Dictionary Learning
Once we have the initial slice I, it is divided into full over-
lapped √n × √n patches, i.e. we shift a sliding patch each 
pixel in both horizontal and vertical direction, as illustrates 
Figure 3.

Then each patch i is converted into a vector (signal) yi∈Rn×1, 
with n = 64 in our tests. Then we conform the signals matrix 
Y={y1,y2,...,yp} ∈Rn×P where P is the number of patches. A 
sparse coding matrix α∈RK×P and a dictionary D∈Rn×K accor-
ding to dictionary learning and sparse coding theory are defi-
ned. K is the number of atoms of the dictionary (in our tests 
K was set to 30 for processing images of 168×168 pixels). 
Solving Equation 1 using the KSVD algorithm proposed in 
[27] [28] the optimized version of α and D are obtained. 
Now, Y can be reconstructed as Y = Dα. As a result, we have 
the sparse representation of Y in D, and we can estimate the 
rarity of a signal yi by analyzing α. di

5.3 Frequency estimation of the atoms
Once we have the learned dictionary of Y, and therefore its 

sparse representation, we proceed to calculate the frequency 
vector F of the dictionary D. The frequency f of a dictio-
nary atom di is equal to the number of signals that it affects, 
which is given by Equation 2, as illustrates Figure 4.

Figure 2. Axial 
slices of a brain 
MRI at different 

depths

Figura 2. Cortes 
axiales de una 
IRM cerebral 
a diferentes 

profundidades

b

d

a

c

Figure 1. Salient region due to rare patterns
Figura 1. Región prominente debido a patrones extraños

(2)

(3)
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Then, the frequency vector F of D is defined as F=(f(d1), 
f(d2),…,f(dK)). In Figure 4 the colored rectangles to the left 
represent the signals (linearized image patches) in Y, and the 
colored rectangles to the right represent the atoms in D. The 
arrows are non-zero values in α which indicate what atoms  
di are linearly combined to approximate a signal yi. Blue and 
black arrows point out signals affected (composed) by high-
frequency atoms. On the other hand, red and green arrows 

point out signals affected by low-frequency atoms.

5.4 Saliency map
After calculating the frequency of all the dictionary atoms, 

the saliency score of each signal is calculated to conform 
the saliency map of the image. The saliency score indicates 
whether the signal is composed of low-frequency atoms or 
not. If a signal is composed of low-frequency atoms, its score 
will be low and therefore must be classified as non-salient. 
The patch will be salient (rare signal) if it has a high score. For-
mally, the saliency score S of a signal yi is given by Equation 4.

Where  ,  is the dot product and αi is the i-th column vec-
tor of α, which is the sparse representation of yi in D. The 
function of equation 4 is to accumulate the frequency of 
the atoms that compose yi, but weighted by its associated 
factors in  αi, i.e. it accumulates the frequency percentage 
(associated factor in αi) of each atom that composes yi. To 
obtain the saliency map SMAP of I, we create first the saliency 
column matrix SCM (see Figure 5) of vectors Si∈Rn×1, where 
Si=(S(i),S(i),…,S(i))T.

Then, the saliency map SMAP of I is constructed from the 
SCM by converting each column into an image patch of  
√n×√n   and adding the overlapping cells. To both increase 
the saliency score of the salient regions, and decrease the 
score of non-salient ones, to achieve a better separation of 
these regions, the transform function, given by Equation 5, is 
applied to the SMAP. In T1w axial brain MRI, structures like 
the ventricles look hypointense, and present low-frequency 
accumulation, as a result, look non-salient and therefore 
could be discarded. We use the convolution matrix ConvM, 
resulting from the application of Equation 7, for increasing 
the saliency score of the inner pixels of the axial brain MRI, 
to avoid discard such regions. Figure 6 shows two axial brain 
MRI T1 and T2 weighted with its corresponding SMAP.

  f(x) = 1 - e-x2

In this function, for big values of x, f(x) is close to 1, and 
for small values of x, f(x) is close to 0. x represents the 
saliency score of the corresponding pixel in the axial brain 
MRI. 

where i and j are the index of row and column of ConvM 
respectively, β is a constant for controlling the dispersion of the 
Gaussian function, cr and cc are the index of the middle row 
and middle column respectively. Finally, SMAP =ConvM    SMAP. 
The operator      represents a bit-wise operation.

Figure 4. Frequency concept of a dictionary atom
Figura 4. Ilustración del concepto de frecuencia de los átomos del diccionario

(4)

Figure 5. Example of the SCM matrix. This matrix is made up of n-dimensional 
column vectors containing the saliency score of each signal in Y

Figura 5. Ejemplo de la matriz SCM. Esta matriz se compone de vectores columna 
n-dimensionales los cuales contienen el puntaje de prominencia de cada señal de Y

(5)

(6)

(7)

Figure 6.  SMAP of an axial brain MRI.
Figura 6. SMAP de un corte axial de una IRM
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Figure 6a corresponds to an Axial T2 weighted brain MRI. 
Figure 6b is the SMAP  of Figure 6a after applying Equation 5. 
Figure 6c is the SMAP after applying Equation 6 to Figure 6b. 
Figure 6d corresponds to an Axial T1 weighted brain MRI, 
Figure 6e is the SMAP  of figure 6d after applying Equation 5, 
and Figure 6f is the  SMAP after applying Equation 6 to Figure 
6e. In figures, 6b and 6e can be observed how the saliency 
score of the brain tissue is higher than the score of the non-
brain tissue. In Figures 6c and 6f, it is observed how was in-
creased the saliency score of the inner pixels while the score 
of the outer ones was decreased after applying Equation 6.

5.5 Skull Stripping
Once we have the final SMAP of I, we proceed to create the 

binary mask for eliminating the non-brain tissue. The mask is 
the result of applying Equation 8 to the SMAP of I.

T is a threshold value calculated as the mean of the pixels in 
SMAP. After computing MK, the non-brain tissue is removed by 
operating I with MK through the bitwise operation I = MK    I.

As was mentioned before, in the deeper slices, the variety of 
patterns may result in salient regions corresponding to non-
brain tissues, causing under-segmentation. And slices near 
to the top, may not have brain tissue. Therefore, for these 
slices, the process is propagated through a region growing 
algorithm, regarding the mean and the dispersion of the pi-
xels corresponding to brain tissues in the middle slices. i.e. 
we compute the mean and the standard deviation from the 
neighbors pixels, corresponding to brain tissue, between the 
middle slices; then, through a region growing algorithm we 
propagate the skull stripping process to the remaining slices 
as follow: a pixel Pi,j belongs to brain tissue if it is neighbor of 
a brain tissue pixel in the previous slice and μ-σ≤P_(i,j)≤μ+σ, 
where μ represents the mean value of the neighbors pixels in 
the previous slices, and σ its standard deviation.

6. RESULTS AND DISCUSSION
The proposed method for Skull Stripping of Brain MRI ba-

sed on Saliency Detection (SSBSD) was testing using T1 and 
T2 weighted MRI. The processing was done in a Windows 10 
64-bit OS workstation. A total of 50 T1w MRI were selected 
from Oxford, PaloAlto and Pittsburgh Data sets, of the “Child 
Mind Institute & International Neuroimaging Data-Sharing 
Initiative (INDI)” public database [29], and 20 T2w MRI were 
selected from “Designed Database of MR Brain Images of 
Healthy Volunteers” public database of MIDAS [30]. Figure 7 
shows the result of the SSBSD applied on T2 weighted MRI.

In Figure 7, the first column presents three slices of T2w 
axial brain MRIs. The images in the middle column represent 
the corresponding SMAP of the images in the first column, 
and the images on the right column, correspond to the skull 
stripped images of the first column. It can be appreciated 
that the SSBSD method separates the cranial and fatty tissue 
without over-segmenting the image. The first axial brain MRI 
in Figure 7 presents under segmentation due to the outlier 
grey value of the non-brain tissue. Figure 8 shows the result 
of applying SSBSD on T1 weighted MRI. Our method has 
a good performance operating over T1w MRI, however, due 
to the low contrast of the images in Figure 8, a small over-
segmentation was carried out.  This can be observed in the 
second MRI (row two). In the first and the third MRI, almost 
no over-segmentation was carried out.  

(8)

Figure 7. Results of the SSBSD on T2 weighted MRIs.
Figura 7. Resultados del SSBSD en IRMs ponderadas en T2

Figure 8. Results of the SSBSD on T1w MRI.
Figura 8. Resultados del SSBSD en IRMs ponderadas en T1
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In Figure 9 the SSBSD is compared to the BET [31], BSE 
[32], ROBEX [33] and S3 [16] methods. The ROBEX and 
the BSE are prone to sub-segmentation. In row two, there is 
a bit of over-segmentation in the BET and sub-segmentation 
in the S3 and the ROBEX, as indicated by the red circles. 
Table 1 summarizes the statistical results of the tests perfor-
med. The comparison is made with the DICE metric, given 
by Equation 9.

Where TP are the true positives (pixels correctly classified 
as brain tissue), FP are the false positives (pixels incorrectly 
classified as brain tissue) and FN are the false negatives (bra-
in tissue pixels classified as non-brain pixels).

7. CONCLUSIONS AND FUTURE WORK
In this paper, a new approach for skull stripping based 

on saliency detection using dictionary learning was presen-
ted. Visual results show the effectiveness of the proposed 
method. It was demonstrated how the concept of salien-
cy can be used for classifying brain tissue and non-brain 
tissue on axial brain MRI to carry out the skull stripping 
process. It was also shown, how detecting saliency on axial 
brain MRI by analyzing the sparse representation of the 
image. Our method can deal with T1 and T2 weighted 
MRI because it does not depend on the gray level of the 
image, but in the saliency of this. As future work, we will 
analyze how to estimate the more suitable threshold for 
avoiding the under and over-segmentation, mainly in T2 
weighted MRI.
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Table 1. Summary of the tests performed
Tabla 1. Resumen de las pruebas realizadas

Method                                     DICE
	 µ	 σ
BET 0.9789 0.0066
BSE 0.9603 0.0341
ROBEX 0.9732 0.0197
S3 0.9832 0.0057
SSBSD 0.9914 0.0051

Figure 9. Comparison of the proposed method with S3, BET, BSE and ROBEX methods, applied on a T1w MRI
Figura 9. Comparación del método propuesto con los métodos S3, BET, BSE y ROBEX, aplicados sobre una IRM ponderada en T1

 Input Ground truth SSBSD S3 BET BSE ROBEX
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